-
Notifications
You must be signed in to change notification settings - Fork 11
/
Copy pathimpletion.m
107 lines (89 loc) · 3.64 KB
/
impletion.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
function [newObjectFiles] = impletion(Dt, id, objectFiles, associations, frame, videoPar)
newObjectFiles = objectFiles;
% retrieve not occluded objects and relative IDs
previousObjectFiles = objectFile.filterOccludedObjects(objectFiles);
previousIDs = objectFile.returnIDs(previousObjectFiles);
% retrieve occluded but not forgotten objects
occludedObjectFiles = objectFile.getOccludedObjects(objectFiles);
occludedIDs = objectFile.returnIDs(occludedObjectFiles);
% define final IDs and shape matrix
IDs_row = [previousIDs, occludedIDs];
n_obj = length(previousObjectFiles);
%% UPDATE PERSISTENT OBJECTS
blockA = associations(1:n_obj, :);
[r, c] = find(blockA==1);
for i = 1 : length(r)
newObjectFiles = objectFile.updateLocation(newObjectFiles, ...
IDs_row(r(i)), Dt(c(i), :), frame);
end
%% REVIVE OCCLUDED OBJECTS FROM NEW DETECTIONS
blockD = associations(n_obj+1:end, :);
[r, c] = find(blockD==1);
for i = 1 : length(r)
newObjectFiles = objectFile.updateLocationFromDetection(newObjectFiles,...
IDs_row(n_obj+r(i)), Dt(c(i), :), frame);
end
%% OCCLUDE UNASSOCIATED OBJECTS
% block C
idxs = sum(blockA, 2) == 0;
for i = 1 : length(idxs)
if idxs(i)
newObjectFiles = objectFile.occlude(newObjectFiles, IDs_row(i));
end
end
%% CREATE OBJECTS FOR UNASSOCIATED DETECTIONS
idxs = sum(associations, 1) == 0;
cursor = length(newObjectFiles) + 1;
for i = 1 : length(idxs)
if idxs(i)
newObjectFiles(cursor) = ...
objectFile.makeObjectFilesFromDetections(Dt(i, :), ...
objectFile.giveMeANewValidID(newObjectFiles), id(i), frame);
cursor = cursor + 1;
end;
end
%% FEATURES
% since correspondance used only filtered objects, in latentVariables we
% only have pointers to this array, not to the original one. So in order to
% be able to properly index objectFiles, we first have to get non occluded
% objects IDs and then, by indexing this array with latentVariables, get
% the index of a specific item in objectList by its ID
filteredObjectFiles = objectFile.filterOccludedObjects(newObjectFiles);
IDs = objectFile.returnIDs(filteredObjectFiles);
% update the features of the not-occluded objects in the scene
for j = 1 : length(filteredObjectFiles)
idx = objectFile.returnIDXgivenAnID(newObjectFiles, IDs(j));
% newObjectFiles{idx}.computePresenceHistogram(filteredObjectFiles);
newObjectFiles{idx}.computeColorHistogram(videoPar);
end
%% smooth trajectories for non occluded objects
smoothPar = 5;
IDs_n = objectFile.returnIDs(newObjectFiles);
for j = 1 : length(newObjectFiles)
idx = objectFile.returnIDXgivenAnID(newObjectFiles, IDs_n(j));
newObjectFiles{idx}.smoothHistory(smoothPar);
end
%% CHECK WHETHER OCCLUDED OBJECTS NEED TO BE DELETED
global alltracks;
occludedLifeSpan = 10;
falsePointsLimit = 3; % percentage of true detection on trajectory
changed = true;
while changed
changed = false;
for i = 1 : length(newObjectFiles)
if newObjectFiles{i}.isOccluded &&...
newObjectFiles{i}.lastFrame + occludedLifeSpan < frame
% keep the track only if it was "pure" enough - made from true
% detections and not based mostly on predictions
if (size(newObjectFiles{i}.history, 1) - newObjectFiles{i}.numberOfFP) > falsePointsLimit
%newObjectFiles{i}.history = ...
% [newObjectFiles{i}.history; [newObjectFiles{i}.lastFrame+1 newObjectFiles{i}.x newObjectFiles{i}.y newObjectFiles{i}.BBw newObjectFiles{i}.BBh]];
alltracks = [alltracks; newObjectFiles(i)];
end
newObjectFiles(i) = [];
changed = true;
break;
end
end
end
end