-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathdataset.py
24 lines (20 loc) · 826 Bytes
/
dataset.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
import librosa
from torch.utils.data import Dataset
from typing import List
from transformers import EncodecFeatureExtractor
class SpeechDataset(Dataset):
def __init__(self, file_paths:List, target_sr):
self.file_paths = file_paths
self.sr = target_sr
self.processor = EncodecFeatureExtractor(sampling_rate=self.sr)
def __len__(self):
return len(self.file_paths)
def __getitem__(self, idx):
path = self.file_paths[idx]
wav, _ = librosa.load(path, sr=self.sr)
return wav, path
def collate_fn(self, data):
audios = [d[0] for d in data]
paths = [d[1] for d in data]
inputs = self.processor(raw_audio=audios, sampling_rate=self.sr, return_tensors="pt")
return inputs['input_values'], inputs['padding_mask'], paths