-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdecoder1.py
181 lines (167 loc) · 7.66 KB
/
decoder1.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
import firebase_admin
import streamlit as st
from firebase_admin import credentials
from firebase_admin import db
import pytesseract as ocr
import pandas as pd
import platform
import os,numpy as np
import datetime
from moviepy.editor import *
import cv2
from zipfile import ZipFile
@st.cache(allow_output_mutation=True)
def init():
try:
firebase_admin.delete_app(firebase_admin.get_app())
except ValueError:
pass
tmp = platform.platform()
# print(tmp)
if 'Windows' in tmp:
cred = credentials.Certificate("H:/Gibui260318/pythonStuff/verifier/apikey.json")
ocr.pytesseract.tesseract_cmd = r'C:\Program Files\Tesseract-OCR\tesseract.exe'
elif 'Linux' in tmp:
cred = credentials.Certificate("/media/cimlab/Transcend/Gibui260318/pythonStuff/verifier/apikey.json")
ocr.pytesseract.tesseract_cmd = r'/usr/bin/tesseract'
firebase_admin.initialize_app(cred, {'databaseURL': 'https://Lab9-c9743.firebaseio.com/'})
@st.cache(allow_output_mutation=True)
def make_student_list(path):
df = pd.read_csv(path, header=0)
skiprows = df.index[df['Groups'] == u'שלישיות מעבדה - 01'].values[0]
tmp = df.index[df['Grouping name'] == 'Not in a grouping'].values[0]
df = df.iloc[skiprows:tmp]
df = df[[df.columns[1], df.columns[2]]]
df['Groups'] = df['Groups'].str.split('-')
stam = pd.DataFrame(df['Groups'].tolist(), columns=['Group', 'num'])
df = df.reset_index()
final = df.join(stam)
groups = final[['Group members', 'num']]
return groups
@st.cache(allow_output_mutation=True)
def from_db(maabada):
init()
# cred = credentials.Certificate("H:/Gibui260318/pythonStuff/verifier/apikey.json")
ref=db.reference(maabada)
df=pd.json_normalize(ref.get())
print(df.to_string())
group=[col[0] for col in df.columns.str.split('.')][::6]
pics=[col[2] for col in df.columns.str.split('.')][::6]
cols=[col[3] for col in df.columns.str.split('.')][:6]
print(group,pics,cols)
tmp=df.to_numpy()
tmp=tmp.reshape(-1,6)
df=pd.DataFrame(tmp)
df.columns=cols
df['targil']=pics
df['group']=group
df=df.astype('string')
return df
@st.cache(allow_output_mutation=True)
def make_pic(path):
clip = VideoFileClip(path)
img = clip.get_frame(1)
return img
@st.cache(allow_output_mutation=True)
def from_movie(path):
# path='/home/cimlab/Downloads/'
# xconfig='--psm 6 --oem 3 -c tessedit_char_whitelist= G0123456789'
# ocr.pytesseract.tesseract_cmd=r'/usr/bin/tesseract'
img=make_pic(path)
bw=cv2.cvtColor(img,cv2.COLOR_BGR2GRAY)
ret,thresh1 = cv2.threshold(bw,0,255,cv2.THRESH_BINARY)
# th3 = cv2.adaptiveThreshold(bw, 255, cv2.ADAPTIVE_THRESH_GAUSSIAN_C,cv2.THRESH_BINARY, 11, 2)
# xconfig = '--psm 6 --oem 3 -c tessedit_char_whitelist= 0123456789'
# ocr.pytesseract.tesseract_cmd = r'/usr/bin/tesseract'
# ocr.pytesseract.tesseract_cmd = r'C:\Program Files\Tesseract-OCR\tesseract.exe'
xconfig = '--psm 10 --oem 3 -c tessedit_char_whitelist=0123456789'
return ocr.image_to_string(thresh1, config=xconfig).strip() , img
@st.cache(allow_output_mutation=True)
def from_extracted(path,groups,df):
group = []
modified = []
tar = []
pic_group=[]
errors=[]
imgs=[]
for ff in os.listdir(path):
for f in os.listdir(ff):
shem = f[:f.index('_')]
group_num = groups['num'][groups['Group members'] == shem].values[0].strip()
group.append(group_num)
indx = f.index('.')
targil=f[indx - 2:indx]
tar.append(targil)
pathRead = os.path.join(path,ff, f)
siomet=f.lower()[-3:]
if (siomet=='avi') or (siomet=='mp4') or (siomet=='mov'):
mtime=os.path.getmtime(pathRead)
mtime = datetime.datetime.fromtimestamp(mtime).__format__("%d/%m/%y %H:%M")
modified.append(mtime)
str_pic,img=from_movie(pathRead)
pic_group.append(str_pic)
imgs.append(img)
else:
modified.append(None)
pic_group.append(None)
errors.append('Group {} submitted to moodle targil {} with {} wrong format'.format(group_num,targil,siomet))
d = {'zip_modified': modified, 'zip_targil': tar,'zip_group': group ,'pic_group': pic_group}
zipdf = pd.DataFrame(data=d,dtype='string')
# zipdf=zipdf.iloc[:3]
# print(len(zipdf))
res=pd.merge(df,zipdf,how='right',left_on=['group','targil'],right_on=['zip_group','zip_targil'])
return res,errors,imgs
def main():
st.header("Verifier decoder")
st.subheader('Tries to find incorrect submissions')
path=st.sidebar.file_uploader("Find the Overview.csv file of students groups")
if path:
groups=make_student_list(path)
if st.sidebar.checkbox("Show students groups"):
st.write('Students groups')
st.dataframe(groups)
maabada=st.sidebar.selectbox('Please select maabada',
('Choose','Robotica','Vision','Robolego','Android','Yetsur','IOT','Auto car 1'))
if maabada!='Choose':
df=from_db(maabada)
if st.sidebar.checkbox('Show data from FireBase'):
st.write('Data from Firebase')
st.dataframe(df)
if st.sidebar.checkbox('Show data from extracted movies'):
extracted_path = st.sidebar.file_uploader("Upload zip movies from Moodle",type="zip")
if extracted_path:
with ZipFile(extracted_path, 'r') as zipObj:
zipObj.extractall(maabada)
res,errors,imgs=from_extracted(maabada,groups,df)
if len(errors)>0:
st.write(errors)
st.write('Data from Moodle')
st.dataframe(res)
tmp=set(res['zip_group'][res['group'].isna()])
st.write('{} Groups not used verifier: {}'.format(len(tmp),','.join(tmp)))
if maabada in ('Robotica','Vision'):
tmp = res[['station', 'group']]
tmp['station']=tmp.station.astype('int')
st.write('Groups {} submitted from wrong station.'
.format(','.join(set(tmp['group'][tmp['station'] > 10].to_numpy()))))
tmp=res[['group','zip_group']]
tmp=set(tmp['group'][tmp['group'] != tmp['zip_group']].to_numpy())
if len(tmp) > 0:
st.write('groups {} don"t match'.format(','.join(tmp)))
tmp = res[['zip_group','pic_group']].dropna()
tmp_set = set(tmp['zip_group'][tmp['zip_group'] != tmp['pic_group']].to_numpy())
if len(tmp_set) > 0:
st.write('groups {} don"t match with picture'.format(','.join(tmp_set)))
tmp.zip_group='group='+tmp.zip_group
st.write('Pic group number \u21d3')
st.image(imgs,caption=tmp.zip_group.tolist(),width=60)
tmp = res[['group','start','created']]
tmp_set=set(tmp['group'][tmp.start>=tmp.created])
if len(tmp_set) > 0:
st.write('groups {} movie was created b4 signing kartis avoda.'.format(','.join(tmp_set)))
if maabada in ('IOT','Auto car 1'):
tmp = res[['group', 'os']]
tmp_set = set(tmp['group'][tmp.os=='Windows'])
if len(tmp_set) > 0:
st.write('groups {} submitted files on wrong OS.'.format(','.join(tmp_set)))
main()