forked from lanpa/tensorboardX
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdemo_embedding.py
83 lines (75 loc) · 2.58 KB
/
demo_embedding.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
import torch
import torch.nn as nn
import torch.nn.functional as F
import os
from torch.autograd.variable import Variable
from tensorboardX import SummaryWriter
from torch.utils.data import TensorDataset, DataLoader
#EMBEDDING VISUALIZATION FOR A TWO-CLASSES PROBLEM
#just a bunch of layers
class M(nn.Module):
def __init__(self):
super(M, self).__init__()
self.cn1 = nn.Conv2d(in_channels=1, out_channels=64, kernel_size=3)
self.cn2 = nn.Conv2d(in_channels=64, out_channels=32, kernel_size=3)
self.fc1 = nn.Linear(in_features=128, out_features=2)
def forward(self, i):
i = self.cn1(i)
i = F.relu(i)
i = F.max_pool2d(i, 2)
i =self.cn2(i)
i = F.relu(i)
i = F.max_pool2d(i, 2)
i = i.view(len(i), -1)
i = self.fc1(i)
i = F.log_softmax(i, dim=1)
return i
#get some random data around value
def get_data(value, shape):
data = torch.ones(shape)*value
#add some noise
data += torch.randn(shape)**2
return data
#dataset
#cat some data with different values
data = torch.cat((get_data(0,(100,1,14,14)),get_data(0.5,(100,1,14,14))),0)
#labels
labels = torch.cat((torch.zeros(100),torch.ones(100)),0)
#generator
gen = DataLoader(TensorDataset(data,labels),batch_size=25,shuffle=True)
#network
m = M()
#loss and optim
loss = nn.NLLLoss()
optimizer = torch.optim.Adam(params=m.parameters())
#settings for train and log
num_epochs = 20
embedding_log = 5
writer = SummaryWriter(comment='mnist_embedding_training')
#TRAIN
for epoch in range(num_epochs):
for j,sample in enumerate(gen):
n_iter = (epoch*len(gen))+j
#reset grad
m.zero_grad()
optimizer.zero_grad()
#get batch data
data_batch = Variable(sample[0], requires_grad=True).float()
label_batch = Variable(sample[1], requires_grad=False).long()
#FORWARD
out = m(data_batch)
loss_value = loss(out, label_batch)
#BACKWARD
loss_value.backward()
optimizer.step()
#LOGGING
writer.add_scalar('loss', loss_value.data[0], n_iter)
if j % embedding_log == 0:
print("loss_value:{}".format(loss_value.data[0]))
#we need 3 dimension for tensor to visualize it!
out = torch.cat((out.data, torch.ones(len(out), 1)), 1)
writer.add_embedding(out, metadata=label_batch.data, label_img=data_batch.data, global_step=n_iter)
writer.close()
# tensorboard --logdir runs
# you should now see a dropdown list with all the timestep,
# last timestep should have a visible separation between the two classes