forked from gpu-mode/lectures
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathutils.py
41 lines (36 loc) · 1.54 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
import torch
import matplotlib.pyplot as plt
from torch.utils.cpp_extension import load_inline
def show_img(x, figsize=(4,3), **kwargs):
"Display HW or CHW format image `x`"
plt.figure(figsize=figsize)
plt.axis('off')
if len(x.shape)==3: x = x.permute(1,2,0) # CHW -> HWC
plt.imshow(x.cpu(), **kwargs)
cuda_begin = r'''
#include <torch/extension.h>
#include <stdio.h>
#include <c10/cuda/CUDAException.h>
#define CHECK_CUDA(x) TORCH_CHECK(x.device().is_cuda(), #x " must be a CUDA tensor")
#define CHECK_CONTIGUOUS(x) TORCH_CHECK(x.is_contiguous(), #x " must be contiguous")
#define CHECK_INPUT(x) CHECK_CUDA(x); CHECK_CONTIGUOUS(x)
#define CUDA_ERR(ans) { gpuAssert((ans), __FILE__, __LINE__); }
inline void gpuAssert(cudaError_t code, const char *file, int line, bool abort=true)
{
if (code != cudaSuccess)
{
fprintf(stderr,"GPUassert: %s %s %d\n", cudaGetErrorString(code), file, line);
if (abort) exit(code);
}
}
__host__ __device__ inline unsigned int cdiv(unsigned int a, unsigned int b) { return (a+b-1)/b;}
'''
def load_cuda(cuda_src, cpp_src, funcs, opt=True, verbose=False, name=None):
"Simple wrapper for torch.utils.cpp_extension.load_inline"
if name is None: name = funcs[0]
flags = "-O3 -Xptxas -O3 -Xcompiler -O3" if opt else "-O0 -Xptxas -O0 -Xcompiler -O0"
return load_inline(cuda_sources=[cuda_src], cpp_sources=[cpp_src], functions=funcs,
extra_cuda_cflags=[flags], verbose=verbose, name=name)
def cdiv(a,b):
"Int ceiling division of `a` over `b`"
return (a+b-1)//b