forked from HadoopIt/joint-slu-lm
-
Notifications
You must be signed in to change notification settings - Fork 0
/
seq_labeling.py
322 lines (275 loc) · 14.3 KB
/
seq_labeling.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
# -*- coding: utf-8 -*-
"""
Created on Wed Mar 9 11:32:21 2016
@author: Bing Liu ([email protected])
"""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
# We disable pylint because we need python3 compatibility.
from six.moves import zip # pylint: disable=redefined-builtin
from tensorflow.python.framework import dtypes
from tensorflow.python.framework import ops
from tensorflow.python.ops import array_ops
from tensorflow.python.ops import control_flow_ops
from tensorflow.python.ops import math_ops
from tensorflow.python.ops import nn_ops
from tensorflow.python.ops import variable_scope
from tensorflow.python.ops import init_ops
from tensorflow.python.framework import tensor_shape
import tensorflow as tf
def _step(time, sequence_length, min_sequence_length, max_sequence_length, zero_logit, generate_logit):
# Step 1: determine whether we need to call_cell or not
empty_update = lambda: zero_logit
logit = control_flow_ops.cond(
time < max_sequence_length, generate_logit, empty_update)
# Step 2: determine whether we need to copy through state and/or outputs
existing_logit = lambda: logit
def copy_through():
# Use broadcasting select to determine which values should get
# the previous state & zero output, and which values should get
# a calculated state & output.
copy_cond = (time >= sequence_length)
return math_ops.select(copy_cond, zero_logit, logit)
logit = control_flow_ops.cond(
time < min_sequence_length, existing_logit, copy_through)
logit.set_shape(logit.get_shape())
return logit
def _reverse_seq(input_seq, lengths):
"""Reverse a list of Tensors up to specified lengths.
Args:
input_seq: Sequence of seq_len tensors of dimension (batch_size, depth)
lengths: A tensor of dimension batch_size, containing lengths for each
sequence in the batch. If "None" is specified, simply reverses
the list.
Returns:
time-reversed sequence
"""
if lengths is None:
return list(reversed(input_seq))
input_shape = tensor_shape.matrix(None, None)
for input_ in input_seq:
input_shape.merge_with(input_.get_shape())
input_.set_shape(input_shape)
# Join into (time, batch_size, depth)
s_joined = array_ops.pack(input_seq)
# TODO(schuster, ebrevdo): Remove cast when reverse_sequence takes int32
if lengths is not None:
lengths = math_ops.to_int64(lengths)
# Reverse along dimension 0
s_reversed = array_ops.reverse_sequence(s_joined, lengths, 0, 1)
# Split again into list
result = array_ops.unpack(s_reversed)
for r in result:
r.set_shape(input_shape)
return result
def linear_transformation(_X, input_size, n_class):
with variable_scope.variable_scope("linear"):
bias_start = 0.0
weight_out = variable_scope.get_variable("Weight_out", [input_size, n_class])
bias_out = variable_scope.get_variable("Bias_out", [n_class],
initializer=init_ops.constant_initializer(bias_start))
output = tf.matmul(_X, weight_out) + bias_out
#regularizers = tf.nn.l2_loss(weight_hidden) + tf.nn.l2_loss(bias_hidden) + tf.nn.l2_loss(weight_out) + tf.nn.l2_loss(bias_out)
return output
def get_linear_transformation_regularizers():
with variable_scope.variable_scope("linear"):
weight_out = variable_scope.get_variable("Weight_out")
bias_out = variable_scope.get_variable("Bias_out")
regularizers = tf.nn.l2_loss(weight_out) + tf.nn.l2_loss(bias_out)
return regularizers
def multilayer_perceptron(_X, input_size, n_hidden, n_class, forward_only=False):
with variable_scope.variable_scope("DNN"):
bias_start = 0.0
weight_hidden = variable_scope.get_variable("Weight_Hidden", [input_size, n_hidden])
bias_hidden = variable_scope.get_variable("Bias_Hidden", [n_hidden],
initializer=init_ops.constant_initializer(bias_start))
#Hidden layer with RELU activation
layer_1 = tf.nn.relu(tf.add(tf.matmul(_X, weight_hidden), bias_hidden))
if not forward_only:
layer_1 = tf.nn.dropout(layer_1, 0.5)
weight_out = variable_scope.get_variable("Weight_Out", [n_hidden, n_class])
bias_out = variable_scope.get_variable("Bias_Out", [n_class],
initializer=init_ops.constant_initializer(bias_start))
output = tf.matmul(layer_1, weight_out) + bias_out
#regularizers = tf.nn.l2_loss(weight_hidden) + tf.nn.l2_loss(bias_hidden) + tf.nn.l2_loss(weight_out) + tf.nn.l2_loss(bias_out)
return output
def get_multilayer_perceptron_regularizers():
with variable_scope.variable_scope("DNN"):
weight_hidden = variable_scope.get_variable("Weight_Hidden")
bias_hidden = variable_scope.get_variable("Bias_Hidden")
weight_out = variable_scope.get_variable("Weight_Out")
bias_out = variable_scope.get_variable("Bias_Out")
regularizers = tf.nn.l2_loss(weight_hidden) + tf.nn.l2_loss(bias_hidden) + tf.nn.l2_loss(weight_out) + tf.nn.l2_loss(bias_out)
return regularizers
def generate_sequence_output(encoder_outputs,
encoder_state,
num_decoder_symbols,
sequence_length,
num_heads=1,
dtype=dtypes.float32,
use_attention=True,
loop_function=None,
scope=None,
DNN_at_output=False,
forward_only=False):
with variable_scope.variable_scope(scope or "non-attention_RNN"):
attention_encoder_outputs = list()
sequence_attention_weights = list()
# copy over logits once out of sequence_length
if encoder_outputs[0].get_shape().ndims != 1:
(fixed_batch_size, output_size) = encoder_outputs[0].get_shape().with_rank(2)
else:
fixed_batch_size = encoder_outputs[0].get_shape().with_rank_at_least(1)[0]
if fixed_batch_size.value:
batch_size = fixed_batch_size.value
else:
batch_size = array_ops.shape(encoder_outputs[0])[0]
if sequence_length is not None:
sequence_length = math_ops.to_int32(sequence_length)
if sequence_length is not None: # Prepare variables
zero_logit = array_ops.zeros(
array_ops.pack([batch_size, num_decoder_symbols]), encoder_outputs[0].dtype)
zero_logit.set_shape(
tensor_shape.TensorShape([fixed_batch_size.value, num_decoder_symbols]))
min_sequence_length = math_ops.reduce_min(sequence_length)
max_sequence_length = math_ops.reduce_max(sequence_length)
for time, input_ in enumerate(encoder_outputs):
if time > 0: variable_scope.get_variable_scope().reuse_variables()
if not DNN_at_output:
generate_logit = lambda: linear_transformation(encoder_outputs[time], output_size, num_decoder_symbols)
else:
generate_logit = lambda: multilayer_perceptron(encoder_outputs[time], output_size, 200, num_decoder_symbols, forward_only=forward_only)
# pylint: enable=cell-var-from-loop
if sequence_length is not None:
logit = _step(
time, sequence_length, min_sequence_length, max_sequence_length, zero_logit, generate_logit)
else:
logit = generate_logit
attention_encoder_outputs.append(logit)
if DNN_at_output:
regularizers = get_multilayer_perceptron_regularizers()
else:
regularizers = get_linear_transformation_regularizers()
return attention_encoder_outputs, sequence_attention_weights, regularizers
def sequence_loss_by_example(logits, targets, weights,
average_across_timesteps=True,
softmax_loss_function=None, name=None):
"""Weighted cross-entropy loss for a sequence of logits (per example).
Args:
logits: List of 2D Tensors of shape [batch_size x num_decoder_symbols].
targets: List of 1D batch-sized int32 Tensors of the same length as logits.
weights: List of 1D batch-sized float-Tensors of the same length as logits.
average_across_timesteps: If set, divide the returned cost by the total
label weight.
softmax_loss_function: Function (inputs-batch, labels-batch) -> loss-batch
to be used instead of the standard softmax (the default if this is None).
name: Optional name for this operation, default: "sequence_loss_by_example".
Returns:
1D batch-sized float Tensor: The log-perplexity for each sequence.
Raises:
ValueError: If len(logits) is different from len(targets) or len(weights).
"""
if len(targets) != len(logits) or len(weights) != len(logits):
raise ValueError("Lengths of logits, weights, and targets must be the same "
"%d, %d, %d." % (len(logits), len(weights), len(targets)))
with ops.op_scope(logits + targets + weights, name,
"sequence_loss_by_example"):
log_perp_list = []
for logit, target, weight in zip(logits, targets, weights):
if softmax_loss_function is None:
# TODO(irving,ebrevdo): This reshape is needed because
# sequence_loss_by_example is called with scalars sometimes, which
# violates our general scalar strictness policy.
target = array_ops.reshape(target, [-1])
crossent = nn_ops.sparse_softmax_cross_entropy_with_logits(
logit, target)
else:
crossent = softmax_loss_function(logit, target)
log_perp_list.append(crossent * weight)
log_perps = math_ops.add_n(log_perp_list)
if average_across_timesteps:
total_size = math_ops.add_n(weights)
total_size += 1e-12 # Just to avoid division by 0 for all-0 weights.
log_perps /= total_size
return log_perps
def sequence_loss(logits, targets, weights,
average_across_timesteps=True, average_across_batch=True,
softmax_loss_function=None, name=None):
"""Weighted cross-entropy loss for a sequence of logits, batch-collapsed.
Args:
logits: List of 2D Tensors of shape [batch_size x num_decoder_symbols].
targets: List of 1D batch-sized int32 Tensors of the same length as logits.
weights: List of 1D batch-sized float-Tensors of the same length as logits.
average_across_timesteps: If set, divide the returned cost by the total
label weight.
average_across_batch: If set, divide the returned cost by the batch size.
softmax_loss_function: Function (inputs-batch, labels-batch) -> loss-batch
to be used instead of the standard softmax (the default if this is None).
name: Optional name for this operation, defaults to "sequence_loss".
Returns:
A scalar float Tensor: The average log-perplexity per symbol (weighted).
Raises:
ValueError: If len(logits) is different from len(targets) or len(weights).
"""
with ops.op_scope(logits + targets + weights, name, "sequence_loss"):
cost = math_ops.reduce_sum(sequence_loss_by_example(
logits, targets, weights,
average_across_timesteps=average_across_timesteps,
softmax_loss_function=softmax_loss_function))
if average_across_batch:
batch_size = array_ops.shape(targets[0])[0]
return cost / math_ops.cast(batch_size, dtypes.float32)
else:
return cost
def generate_task_output(encoder_outputs, additional_inputs, encoder_state, targets,sequence_length, num_decoder_symbols, weights,
buckets, softmax_loss_function=None,
per_example_loss=False, name=None, use_attention=False, scope=None, DNN_at_output=False,
intent_results=None,
tagging_results=None,
train_with_true_label=True,
use_local_context=False,
forward_only=False):
if len(targets) < buckets[-1][1]:
raise ValueError("Length of targets (%d) must be at least that of last"
"bucket (%d)." % (len(targets), buckets[-1][1]))
all_inputs = encoder_outputs + targets + weights
with ops.op_scope(all_inputs, name, "model_with_buckets"):
if scope == 'intent':
logits, regularizers, sampled_intents = intent_results
sampled_tags = list()
elif scope == 'tagging':
logits, regularizers, sampled_tags = tagging_results
sampled_intents = list()
elif scope == 'lm':
with variable_scope.variable_scope(scope + "_generate_sequence_output", reuse=None):
task_inputs = []
if use_local_context:
print ('lm task: use sampled_tag_intent_emb as local context')
task_inputs = [array_ops.concat(1, [additional_input, encoder_output]) for additional_input, encoder_output in zip(additional_inputs, encoder_outputs)]
else:
task_inputs = encoder_outputs
logits, _, regularizers = generate_sequence_output(task_inputs,
encoder_state,
num_decoder_symbols,
sequence_length,
use_attention=use_attention,
DNN_at_output=DNN_at_output,
forward_only=forward_only)
sampled_tags = list()
sampled_intents = list()
if per_example_loss is None:
assert len(logits) == len(targets)
# We need to make target and int64-tensor and set its shape.
bucket_target = [array_ops.reshape(math_ops.to_int64(x), [-1]) for x in targets]
crossent = sequence_loss_by_example(
logits, bucket_target, weights,
softmax_loss_function=softmax_loss_function)
else:
assert len(logits) == len(targets)
bucket_target = [array_ops.reshape(math_ops.to_int64(x), [-1]) for x in targets]
crossent = sequence_loss(
logits, bucket_target, weights,
softmax_loss_function=softmax_loss_function)
crossent_with_regularizers = crossent + 1e-4 * regularizers
return logits, sampled_tags, sampled_intents, crossent_with_regularizers, crossent