-
Notifications
You must be signed in to change notification settings - Fork 493
/
Copy pathquickstart.py
242 lines (207 loc) · 9.37 KB
/
quickstart.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
"""
Copyright 2025, Zep Software, Inc.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
"""
import asyncio
import json
import logging
import os
from datetime import datetime, timezone
from logging import INFO
from dotenv import load_dotenv
from graphiti_core import Graphiti
from graphiti_core.nodes import EpisodeType
from graphiti_core.search.search_config_recipes import NODE_HYBRID_SEARCH_RRF
#################################################
# CONFIGURATION
#################################################
# Set up logging and environment variables for
# connecting to Neo4j database
#################################################
# Configure logging
logging.basicConfig(
level=INFO,
format='%(asctime)s - %(name)s - %(levelname)s - %(message)s',
datefmt='%Y-%m-%d %H:%M:%S',
)
logger = logging.getLogger(__name__)
load_dotenv()
# Neo4j connection parameters
# Make sure Neo4j Desktop is running with a local DBMS started
neo4j_uri = os.environ.get('NEO4J_URI', 'bolt://localhost:7687')
neo4j_user = os.environ.get('NEO4J_USER', 'neo4j')
neo4j_password = os.environ.get('NEO4J_PASSWORD', 'password')
if not neo4j_uri or not neo4j_user or not neo4j_password:
raise ValueError('NEO4J_URI, NEO4J_USER, and NEO4J_PASSWORD must be set')
async def main():
#################################################
# INITIALIZATION
#################################################
# Connect to Neo4j and set up Graphiti indices
# This is required before using other Graphiti
# functionality
#################################################
# Initialize Graphiti with Neo4j connection
graphiti = Graphiti(neo4j_uri, neo4j_user, neo4j_password)
try:
# Initialize the graph database with graphiti's indices. This only needs to be done once.
await graphiti.build_indices_and_constraints()
#################################################
# ADDING EPISODES
#################################################
# Episodes are the primary units of information
# in Graphiti. They can be text or structured JSON
# and are automatically processed to extract entities
# and relationships.
#################################################
# Example: Add Episodes
# Episodes list containing both text and JSON episodes
episodes = [
{
'content': 'Kamala Harris is the Attorney General of California. She was previously '
'the district attorney for San Francisco.',
'type': EpisodeType.text,
'description': 'podcast transcript',
},
{
'content': 'As AG, Harris was in office from January 3, 2011 – January 3, 2017',
'type': EpisodeType.text,
'description': 'podcast transcript',
},
{
'content': {
'name': 'Gavin Newsom',
'position': 'Governor',
'state': 'California',
'previous_role': 'Lieutenant Governor',
'previous_location': 'San Francisco',
},
'type': EpisodeType.json,
'description': 'podcast metadata',
},
{
'content': {
'name': 'Gavin Newsom',
'position': 'Governor',
'term_start': 'January 7, 2019',
'term_end': 'Present',
},
'type': EpisodeType.json,
'description': 'podcast metadata',
},
]
# Add episodes to the graph
for i, episode in enumerate(episodes):
await graphiti.add_episode(
name=f'Freakonomics Radio {i}',
episode_body=episode['content']
if isinstance(episode['content'], str)
else json.dumps(episode['content']),
source=episode['type'],
source_description=episode['description'],
reference_time=datetime.now(timezone.utc),
)
print(f'Added episode: Freakonomics Radio {i} ({episode["type"].value})')
#################################################
# BASIC SEARCH
#################################################
# The simplest way to retrieve relationships (edges)
# from Graphiti is using the search method, which
# performs a hybrid search combining semantic
# similarity and BM25 text retrieval.
#################################################
# Perform a hybrid search combining semantic similarity and BM25 retrieval
print("\nSearching for: 'Who was the California Attorney General?'")
results = await graphiti.search('Who was the California Attorney General?')
# Print search results
print('\nSearch Results:')
for result in results:
print(f'UUID: {result.uuid}')
print(f'Fact: {result.fact}')
if hasattr(result, 'valid_at') and result.valid_at:
print(f'Valid from: {result.valid_at}')
if hasattr(result, 'invalid_at') and result.invalid_at:
print(f'Valid until: {result.invalid_at}')
print('---')
#################################################
# CENTER NODE SEARCH
#################################################
# For more contextually relevant results, you can
# use a center node to rerank search results based
# on their graph distance to a specific node
#################################################
# Use the top search result's UUID as the center node for reranking
if results and len(results) > 0:
# Get the source node UUID from the top result
center_node_uuid = results[0].source_node_uuid
print('\nReranking search results based on graph distance:')
print(f'Using center node UUID: {center_node_uuid}')
reranked_results = await graphiti.search(
'Who was the California Attorney General?', center_node_uuid=center_node_uuid
)
# Print reranked search results
print('\nReranked Search Results:')
for result in reranked_results:
print(f'UUID: {result.uuid}')
print(f'Fact: {result.fact}')
if hasattr(result, 'valid_at') and result.valid_at:
print(f'Valid from: {result.valid_at}')
if hasattr(result, 'invalid_at') and result.invalid_at:
print(f'Valid until: {result.invalid_at}')
print('---')
else:
print('No results found in the initial search to use as center node.')
#################################################
# NODE SEARCH USING SEARCH RECIPES
#################################################
# Graphiti provides predefined search recipes
# optimized for different search scenarios.
# Here we use NODE_HYBRID_SEARCH_RRF for retrieving
# nodes directly instead of edges.
#################################################
# Example: Perform a node search using _search method with standard recipes
print(
'\nPerforming node search using _search method with standard recipe NODE_HYBRID_SEARCH_RRF:'
)
# Use a predefined search configuration recipe and modify its limit
node_search_config = NODE_HYBRID_SEARCH_RRF.model_copy(deep=True)
node_search_config.limit = 5 # Limit to 5 results
# Execute the node search
node_search_results = await graphiti._search(
query='California Governor',
config=node_search_config,
)
# Print node search results
print('\nNode Search Results:')
for node in node_search_results.nodes:
print(f'Node UUID: {node.uuid}')
print(f'Node Name: {node.name}')
node_summary = node.summary[:100] + '...' if len(node.summary) > 100 else node.summary
print(f'Content Summary: {node_summary}')
print(f'Node Labels: {", ".join(node.labels)}')
print(f'Created At: {node.created_at}')
if hasattr(node, 'attributes') and node.attributes:
print('Attributes:')
for key, value in node.attributes.items():
print(f' {key}: {value}')
print('---')
finally:
#################################################
# CLEANUP
#################################################
# Always close the connection to Neo4j when
# finished to properly release resources
#################################################
# Close the connection
await graphiti.close()
print('\nConnection closed')
if __name__ == '__main__':
asyncio.run(main())