-
Notifications
You must be signed in to change notification settings - Fork 10
/
Copy pathring.go
178 lines (162 loc) · 4.66 KB
/
ring.go
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
package ring
import (
"encoding/binary"
"encoding/json"
"fmt"
"io"
"time"
"unsafe"
"github.com/gholt/ring/lowring"
)
type Ring struct {
nodes []*Node
groups []*Group
nodeToGroup []int
groupToGroup []int
replicaToPartitionToNode [][]lowring.Node
rebalanced time.Time
}
func (r *Ring) Nodes() []*Node {
nodes := make([]*Node, len(r.nodes))
copy(nodes, r.nodes)
return nodes
}
func (r *Ring) Groups() []*Group {
groups := make([]*Group, len(r.groups))
copy(groups, r.groups)
return groups
}
func (r *Ring) ReplicaCount() int {
return len(r.replicaToPartitionToNode)
}
func (r *Ring) PartitionCount() int {
return len(r.replicaToPartitionToNode[0])
}
func (r *Ring) AssignmentCount() int {
return len(r.replicaToPartitionToNode) * len(r.replicaToPartitionToNode[0])
}
func (r *Ring) Rebalanced() time.Time {
return r.rebalanced
}
func (r *Ring) KeyNodes(key int) []*Node {
nodes := make([]*Node, 0, len(r.replicaToPartitionToNode))
partition := key % len(r.replicaToPartitionToNode[0])
for _, partitionToNode := range r.replicaToPartitionToNode {
nodes = append(nodes, r.nodes[partitionToNode[partition]])
}
return nodes
}
func (r *Ring) ResponsibleForReplicaPartition(replica, partition int) *Node {
return r.nodes[r.replicaToPartitionToNode[replica][partition]]
}
type ringJSON struct {
MarshalVersion int
NodeType int
ReplicaCount int
PartitionCount int
Nodes []*ringNodeJSON
Groups []*ringGroupJSON
Rebalanced int64
}
type ringNodeJSON struct {
Info string
Capacity int
Group int
}
type ringGroupJSON struct {
Info string
Parent int
}
func (r *Ring) Marshal(w io.Writer) error {
var nodeType lowring.Node
j := &ringJSON{
MarshalVersion: 0,
NodeType: int(unsafe.Sizeof(nodeType)) * 8,
ReplicaCount: len(r.replicaToPartitionToNode),
PartitionCount: len(r.replicaToPartitionToNode[0]),
Nodes: make([]*ringNodeJSON, len(r.nodes)),
Groups: make([]*ringGroupJSON, len(r.groups)),
Rebalanced: r.rebalanced.UnixNano(),
}
for i, n := range r.nodes {
j.Nodes[i] = &ringNodeJSON{
Info: n.info,
Capacity: n.capacity,
Group: r.nodeToGroup[n.index],
}
}
for i, g := range r.groups {
j.Groups[i] = &ringGroupJSON{
Info: g.info,
Parent: r.groupToGroup[g.index],
}
}
if err := json.NewEncoder(w).Encode(j); err != nil {
return err
}
// This 0 byte is written as a preface to the raw ring data and will let
// the unmarshaler get past any trailing whitespace, newlines, etc. that
// the JSON encoder may or may not have written.
if _, err := w.Write([]byte{0}); err != nil {
return err
}
for _, partitionToNode := range r.replicaToPartitionToNode {
if err := binary.Write(w, binary.LittleEndian, partitionToNode); err != nil {
return err
}
}
return nil
}
func Unmarshal(r io.Reader) (*Ring, error) {
var nodeType lowring.Node
j := &ringJSON{}
jsonDecoder := json.NewDecoder(r)
if err := jsonDecoder.Decode(j); err != nil {
return nil, err
}
r = io.MultiReader(jsonDecoder.Buffered(), r)
// These byte reads are to get past any trailing whitespace, newlines, etc.
// the JSON encoder may or may not have written. When marshalling we
// preface the raw ring data with a 0 byte.
b0 := []byte{0}
for {
if n, err := r.Read(b0); err != nil {
return nil, err
} else if n == 0 {
b0[0] = 1
}
if b0[0] == 0 {
break
}
}
if j.MarshalVersion != 0 {
return nil, fmt.Errorf("unable to interpret data with MarshalVersion %d", j.MarshalVersion)
}
if j.NodeType != int(unsafe.Sizeof(nodeType))*8 {
return nil, fmt.Errorf("ring data does not match compiled ring format. NodeType is %d bits in the data and %d bits compiled.", j.NodeType, int(unsafe.Sizeof(nodeType))*8)
}
rv := &Ring{
nodes: make([]*Node, len(j.Nodes)),
groups: make([]*Group, len(j.Groups)),
replicaToPartitionToNode: make([][]lowring.Node, j.ReplicaCount),
}
rv.nodeToGroup = make([]int, len(j.Nodes))
rv.groupToGroup = make([]int, len(j.Groups))
rv.rebalanced = time.Unix(0, j.Rebalanced)
for i, jn := range j.Nodes {
rv.nodes[i] = &Node{ring: rv, index: i, info: jn.Info, capacity: jn.Capacity}
rv.nodeToGroup[i] = jn.Group
}
for i, jg := range j.Groups {
rv.groups[i] = &Group{ring: rv, index: i, info: jg.Info}
rv.groupToGroup[i] = jg.Parent
}
rv.replicaToPartitionToNode = make([][]lowring.Node, j.ReplicaCount)
for replica := 0; replica < j.ReplicaCount; replica++ {
rv.replicaToPartitionToNode[replica] = make([]lowring.Node, j.PartitionCount)
if err := binary.Read(r, binary.LittleEndian, rv.replicaToPartitionToNode[replica]); err != nil {
return nil, err
}
}
return rv, nil
}