forked from stefanopini/simple-HRNet
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathSimpleHRNet.py
328 lines (277 loc) · 14.5 KB
/
SimpleHRNet.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
import cv2
import numpy as np
import torch
from torchvision.transforms import transforms
from models.hrnet import HRNet
from models.detectors.YOLOv3 import YOLOv3
class SimpleHRNet:
"""
SimpleHRNet class.
The class provides a simple and customizable method to load the HRNet network, load the official pre-trained
weights, and predict the human pose on single images.
Multi-person support with the YOLOv3 detector is also included (and enabled by default).
"""
def __init__(self,
c,
nof_joints,
checkpoint_path,
resolution=(384, 288),
interpolation=cv2.INTER_CUBIC,
multiperson=True,
max_batch_size=32,
yolo_model_def="./models/detectors/yolo/config/yolov3.cfg",
yolo_class_path="./models/detectors/yolo/data/coco.names",
yolo_weights_path="./models/detectors/yolo/weights/yolov3.weights",
device=torch.device("cpu")):
"""
Initializes a new SimpleHRNet object.
HRNet (and YOLOv3) are initialized on the torch.device("device") and
its (their) pre-trained weights will be loaded from disk.
Args:
c (int): number of channels.
nof_joints (int): number of joints.
checkpoint_path (str): path to an official hrnet checkpoint or a checkpoint obtained with `train_coco.py`.
resolution (tuple): hrnet input resolution - format: (height, width).
Default: (384, 288)
interpolation (int): opencv interpolation algorithm.
Default: cv2.INTER_CUBIC
multiperson (bool): if True, multiperson detection will be enabled.
This requires the use of a people detector (like YOLOv3).
Default: True
max_batch_size (int): maximum batch size used in hrnet inference.
Useless without multiperson=True.
Default: 16
yolo_model_def (str): path to yolo model definition file.
Default: "./models/detectors/yolo/config/yolov3.cfg"
yolo_class_path (str): path to yolo class definition file.
Default: "./models/detectors/yolo/data/coco.names"
yolo_weights_path (str): path to yolo pretrained weights file.
Default: "./models/detectors/yolo/weights/yolov3.weights.cfg"
device (:class:`torch.device`): the hrnet (and yolo) inference will be run on this device.
Default: torch.device("cpu")
"""
self.c = c
self.nof_joints = nof_joints
self.checkpoint_path = checkpoint_path
self.resolution = resolution # in the form (height, width) as in the original implementation
self.interpolation = interpolation
self.multiperson = multiperson
self.max_batch_size = max_batch_size
self.yolo_model_def = yolo_model_def
self.yolo_class_path = yolo_class_path
self.yolo_weights_path = yolo_weights_path
self.device = device
self.model = HRNet(c=c, nof_joints=nof_joints).to(device)
checkpoint = torch.load(checkpoint_path, map_location=self.device)
if 'model' in checkpoint:
self.model.load_state_dict(checkpoint['model'])
else:
self.model.load_state_dict(checkpoint)
self.model.eval()
if not self.multiperson:
self.transform = transforms.Compose([
transforms.ToTensor(),
transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]),
])
else:
self.detector = YOLOv3(model_def=yolo_model_def,
class_path=yolo_class_path,
weights_path=yolo_weights_path,
classes=('person',),
max_batch_size=self.max_batch_size,
device=device)
self.transform = transforms.Compose([
transforms.ToPILImage(),
transforms.Resize((self.resolution[0], self.resolution[1])), # (height, width)
transforms.ToTensor(),
transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]),
])
pass
def predict(self, image):
"""
Predicts the human pose on a single image.
Args:
image (:class:`np.ndarray`):
the image(s) on which the human pose will be estimated.
image is expected to be in the opencv format.
image can be:
- a single image with shape=(height, width, BGR color channel)
- a stack of n images with shape=(n, height, width, BGR color channel)
Returns:
`:class:np.ndarray`:
a numpy array containing human joints for each (detected) person.
Format:
if image is a single image:
shape=(# of people, # of joints (nof_joints), 3); dtype=(np.float32).
if image is a stack of n images:
list of n np.ndarrays with
shape=(# of people, # of joints (nof_joints), 3); dtype=(np.float32).
Each joint has 3 values: (x position, y position, joint confidence)
"""
if len(image.shape) == 3:
return self._predict_single(image)
elif len(image.shape) == 4:
return self._predict_batch(image)
else:
raise ValueError('Wrong image format.')
def _predict_single(self, image):
if not self.multiperson:
old_res = image.shape
if self.resolution is not None:
image = cv2.resize(
image,
(self.resolution[1], self.resolution[0]), # (width, height)
interpolation=self.interpolation
)
images = self.transform(cv2.cvtColor(image, cv2.COLOR_BGR2RGB)).unsqueeze(dim=0)
boxes = np.asarray([[0, 0, old_res[1], old_res[0]]], dtype=np.float32) # [x1, y1, x2, y2]
else:
detections = self.detector.predict_single(image)
boxes = []
if detections is not None:
images = torch.empty((len(detections), 3, self.resolution[0], self.resolution[1])) # (height, width)
for i, (x1, y1, x2, y2, conf, cls_conf, cls_pred) in enumerate(detections):
x1 = int(round(x1.item()))
x2 = int(round(x2.item()))
y1 = int(round(y1.item()))
y2 = int(round(y2.item()))
# Adapt detections to match HRNet input aspect ratio (as suggested by xtyDoge in issue #14)
correction_factor = self.resolution[0] / self.resolution[1] * (x2 - x1) / (y2 - y1)
if correction_factor > 1:
# increase y side
center = y1 + (y2 - y1) // 2
length = int(round((y2 - y1) * correction_factor))
y1 = max(0, center - length // 2)
y2 = min(image.shape[0], center + length // 2)
elif correction_factor < 1:
# increase x side
center = x1 + (x2 - x1) // 2
length = int(round((x2 - x1) * 1 / correction_factor))
x1 = max(0, center - length // 2)
x2 = min(image.shape[1], center + length // 2)
boxes.append([x1, y1, x2, y2])
images[i] = self.transform(image[y1:y2, x1:x2, ::-1])
else:
images = torch.empty((0, 3, self.resolution[0], self.resolution[1])) # (height, width)
boxes = np.asarray(boxes, dtype=np.int32)
if images.shape[0] > 0:
images = images.to(self.device)
with torch.no_grad():
if len(images) <= self.max_batch_size:
out = self.model(images)
else:
out = torch.empty(
(images.shape[0], self.nof_joints, self.resolution[0] // 4, self.resolution[1] // 4)
).to(self.device)
for i in range(0, len(images), self.max_batch_size):
out[i:i + self.max_batch_size] = self.model(images[i:i + self.max_batch_size])
out = out.detach().cpu().numpy()
pts = np.empty((out.shape[0], out.shape[1], 3), dtype=np.float32)
# For each human, for each joint: x, y, confidence
for i, human in enumerate(out):
for j, joint in enumerate(human):
pt = np.unravel_index(np.argmax(joint), (self.resolution[0] // 4, self.resolution[1] // 4))
# 0: pt_x / (width // 4) * (bb_x2 - bb_x1) + bb_x1
# 1: pt_y / (height // 4) * (bb_y2 - bb_y1) + bb_y1
# 2: confidences
pts[i, j, 0] = pt[0] * 1. / (self.resolution[0] // 4) * (boxes[i][3] - boxes[i][1]) + boxes[i][1]
pts[i, j, 1] = pt[1] * 1. / (self.resolution[1] // 4) * (boxes[i][2] - boxes[i][0]) + boxes[i][0]
pts[i, j, 2] = joint[pt]
else:
pts = np.empty((0, 0, 3), dtype=np.float32)
return pts
def _predict_batch(self, images):
if not self.multiperson:
old_res = images[0].shape
if self.resolution is not None:
images_tensor = torch.empty(images.shape[0], 3, self.resolution[0], self.resolution[1])
else:
images_tensor = torch.empty(images.shape[0], 3, images.shape[1], images.shape[2])
for i, image in enumerate(images):
if self.resolution is not None:
image = cv2.resize(
image,
(self.resolution[1], self.resolution[0]), # (width, height)
interpolation=self.interpolation
)
image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
images_tensor[i] = self.transform(image)
images = images_tensor
boxes = np.repeat(
np.asarray([[0, 0, old_res[1], old_res[0]]], dtype=np.float32), len(images), axis=0
) # [x1, y1, x2, y2]
else:
image_detections = self.detector.predict(images)
boxes = []
images_tensor = []
for d, detections in enumerate(image_detections):
image = images[d]
boxes_image = []
if detections is not None:
images_tensor_image = torch.empty(
(len(detections), 3, self.resolution[0], self.resolution[1])) # (height, width)
for i, (x1, y1, x2, y2, conf, cls_conf, cls_pred) in enumerate(detections):
x1 = int(round(x1.item()))
x2 = int(round(x2.item()))
y1 = int(round(y1.item()))
y2 = int(round(y2.item()))
# Adapt detections to match HRNet input aspect ratio (as suggested by xtyDoge in issue #14)
correction_factor = self.resolution[0] / self.resolution[1] * (x2 - x1) / (y2 - y1)
if correction_factor > 1:
# increase y side
center = y1 + (y2 - y1) // 2
length = int(round((y2 - y1) * correction_factor))
y1 = max(0, center - length // 2)
y2 = min(image.shape[0], center + length // 2)
elif correction_factor < 1:
# increase x side
center = x1 + (x2 - x1) // 2
length = int(round((x2 - x1) * 1 / correction_factor))
x1 = max(0, center - length // 2)
x2 = min(image.shape[1], center + length // 2)
boxes_image.append([x1, y1, x2, y2])
images_tensor_image[i] = self.transform(image[y1:y2, x1:x2, ::-1])
else:
images_tensor_image = torch.empty((0, 3, self.resolution[0], self.resolution[1])) # (height, width)
# stack all images and boxes in single lists
images_tensor.extend(images_tensor_image)
boxes.extend(boxes_image)
# convert lists into tensors/np.ndarrays
images = torch.tensor(np.stack(images_tensor))
boxes = np.asarray(boxes, dtype=np.int32)
images = images.to(self.device)
with torch.no_grad():
if len(images) <= self.max_batch_size:
out = self.model(images)
else:
out = torch.empty(
(images.shape[0], self.nof_joints, self.resolution[0] // 4, self.resolution[1] // 4)
).to(self.device)
for i in range(0, len(images), self.max_batch_size):
out[i:i + self.max_batch_size] = self.model(images[i:i + self.max_batch_size])
out = out.detach().cpu().numpy()
pts = np.empty((out.shape[0], out.shape[1], 3), dtype=np.float32)
# For each human, for each joint: x, y, confidence
for i, human in enumerate(out):
for j, joint in enumerate(human):
pt = np.unravel_index(np.argmax(joint), (self.resolution[0] // 4, self.resolution[1] // 4))
# 0: pt_x / (width // 4) * (bb_x2 - bb_x1) + bb_x1
# 1: pt_y / (height // 4) * (bb_y2 - bb_y1) + bb_y1
# 2: confidences
pts[i, j, 0] = pt[0] * 1. / (self.resolution[0] // 4) * (boxes[i][3] - boxes[i][1]) + boxes[i][1]
pts[i, j, 1] = pt[1] * 1. / (self.resolution[1] // 4) * (boxes[i][2] - boxes[i][0]) + boxes[i][0]
pts[i, j, 2] = joint[pt]
if self.multiperson:
# re-add the removed batch axis (n)
pts_batch = []
index = 0
for detections in image_detections:
if detections is not None:
pts_batch.append(pts[index:index + len(detections)])
index += len(detections)
else:
pts_batch.append(np.zeros((0, self.nof_joints, 3), dtype=np.float32))
pts = pts_batch
else:
pts = np.expand_dims(pts, axis=1)
return pts