.. currentmodule:: pandas
.. ipython:: python :suppress: import numpy as np from numpy.random import randn, rand, randint np.random.seed(123456) from pandas import DataFrame, Series, date_range, options import pandas.util.testing as tm np.set_printoptions(precision=4, suppress=True) import matplotlib.pyplot as plt plt.close('all') options.display.mpl_style = 'default' from pandas.compat import lrange
Note
We intend to build more plotting integration with matplotlib as time goes on.
We use the standard convention for referencing the matplotlib API:
.. ipython:: python import matplotlib.pyplot as plt
See the :ref:`cookbook<cookbook.plotting>` for some advanced strategies
The plot
method on Series and DataFrame is just a simple wrapper around
plt.plot
:
.. ipython:: python ts = Series(randn(1000), index=date_range('1/1/2000', periods=1000)) ts = ts.cumsum() @savefig series_plot_basic.png ts.plot()
If the index consists of dates, it calls gcf().autofmt_xdate()
to try to
format the x-axis nicely as per above. The method takes a number of arguments
for controlling the look of the plot:
.. ipython:: python @savefig series_plot_basic2.png plt.figure(); ts.plot(style='k--', label='Series'); plt.legend()
On DataFrame, plot
is a convenience to plot all of the columns with labels:
.. ipython:: python df = DataFrame(randn(1000, 4), index=ts.index, columns=list('ABCD')) df = df.cumsum() @savefig frame_plot_basic.png plt.figure(); df.plot(); plt.legend(loc='best')
You may set the legend
argument to False
to hide the legend, which is
shown by default.
.. ipython:: python @savefig frame_plot_basic_noleg.png df.plot(legend=False)
Some other options are available, like plotting each Series on a different axis:
.. ipython:: python @savefig frame_plot_subplots.png df.plot(subplots=True, figsize=(6, 6)); plt.legend(loc='best')
You may pass logy
to get a log-scale Y axis.
.. ipython:: python plt.figure(); ts = Series(randn(1000), index=date_range('1/1/2000', periods=1000)) ts = np.exp(ts.cumsum()) @savefig series_plot_logy.png ts.plot(logy=True)
You can plot one column versus another using the x and y keywords in DataFrame.plot:
.. ipython:: python plt.figure() df3 = DataFrame(randn(1000, 2), columns=['B', 'C']).cumsum() df3['A'] = Series(list(range(len(df)))) @savefig df_plot_xy.png df3.plot(x='A', y='B')
To plot data on a secondary y-axis, use the secondary_y
keyword:
.. ipython:: python plt.figure() df.A.plot() @savefig series_plot_secondary_y.png df.B.plot(secondary_y=True, style='g')
To plot some columns in a DataFrame, give the column names to the secondary_y
keyword:
.. ipython:: python plt.figure() ax = df.plot(secondary_y=['A', 'B']) ax.set_ylabel('CD scale') @savefig frame_plot_secondary_y.png ax.right_ax.set_ylabel('AB scale')
Note that the columns plotted on the secondary y-axis is automatically marked
with "(right)" in the legend. To turn off the automatic marking, use the
mark_right=False
keyword:
.. ipython:: python plt.figure() @savefig frame_plot_secondary_y_no_right.png df.plot(secondary_y=['A', 'B'], mark_right=False)
Pandas includes automatically tick resolution adjustment for regular frequency
time-series data. For limited cases where pandas cannot infer the frequency
information (e.g., in an externally created twinx
), you can choose to
suppress this behavior for alignment purposes.
Here is the default behavior, notice how the x-axis tick labelling is performed:
.. ipython:: python plt.figure() @savefig ser_plot_suppress.png df.A.plot()
Using the x_compat
parameter, you can suppress this behavior:
.. ipython:: python plt.figure() @savefig ser_plot_suppress_parm.png df.A.plot(x_compat=True)
If you have more than one plot that needs to be suppressed, the use
method
in pandas.plot_params
can be used in a with statement:
.. ipython:: python import pandas as pd plt.figure() @savefig ser_plot_suppress_context.png with pd.plot_params.use('x_compat', True): df.A.plot(color='r') df.B.plot(color='g') df.C.plot(color='b')
You can pass an ax
argument to Series.plot
to plot on a particular axis:
.. ipython:: python :suppress: ts = Series(randn(1000), index=date_range('1/1/2000', periods=1000)) ts = ts.cumsum() df = DataFrame(randn(1000, 4), index=ts.index, columns=list('ABCD')) df = df.cumsum()
.. ipython:: python fig, axes = plt.subplots(nrows=2, ncols=2) df['A'].plot(ax=axes[0,0]); axes[0,0].set_title('A') df['B'].plot(ax=axes[0,1]); axes[0,1].set_title('B') df['C'].plot(ax=axes[1,0]); axes[1,0].set_title('C') @savefig series_plot_multi.png df['D'].plot(ax=axes[1,1]); axes[1,1].set_title('D')
For labeled, non-time series data, you may wish to produce a bar plot:
.. ipython:: python plt.figure(); @savefig bar_plot_ex.png df.ix[5].plot(kind='bar'); plt.axhline(0, color='k')
Calling a DataFrame's plot
method with kind='bar'
produces a multiple
bar plot:
.. ipython:: python :suppress: plt.figure();
.. ipython:: python df2 = DataFrame(rand(10, 4), columns=['a', 'b', 'c', 'd']) @savefig bar_plot_multi_ex.png df2.plot(kind='bar');
To produce a stacked bar plot, pass stacked=True
:
.. ipython:: python :suppress: plt.figure();
.. ipython:: python @savefig bar_plot_stacked_ex.png df2.plot(kind='bar', stacked=True);
To get horizontal bar plots, pass kind='barh'
:
.. ipython:: python :suppress: plt.figure();
.. ipython:: python @savefig barh_plot_stacked_ex.png df2.plot(kind='barh', stacked=True);
.. ipython:: python plt.figure(); @savefig hist_plot_ex.png df['A'].diff().hist()
For a DataFrame, hist
plots the histograms of the columns on multiple
subplots:
.. ipython:: python plt.figure() @savefig frame_hist_ex.png df.diff().hist(color='k', alpha=0.5, bins=50)
New since 0.10.0, the by
keyword can be specified to plot grouped histograms:
.. ipython:: python :suppress: plt.figure();
.. ipython:: python data = Series(randn(1000)) @savefig grouped_hist.png data.hist(by=randint(0, 4, 1000), figsize=(6, 4))
DataFrame has a boxplot
method which allows you to visualize the
distribution of values within each column.
For instance, here is a boxplot representing five trials of 10 observations of a uniform random variable on [0,1).
.. ipython:: python df = DataFrame(rand(10,5)) plt.figure(); @savefig box_plot_ex.png bp = df.boxplot()
You can create a stratified boxplot using the by
keyword argument to create
groupings. For instance,
.. ipython:: python df = DataFrame(rand(10,2), columns=['Col1', 'Col2'] ) df['X'] = Series(['A','A','A','A','A','B','B','B','B','B']) plt.figure(); @savefig box_plot_ex2.png bp = df.boxplot(by='X')
You can also pass a subset of columns to plot, as well as group by multiple columns:
.. ipython:: python df = DataFrame(rand(10,3), columns=['Col1', 'Col2', 'Col3']) df['X'] = Series(['A','A','A','A','A','B','B','B','B','B']) df['Y'] = Series(['A','B','A','B','A','B','A','B','A','B']) plt.figure(); @savefig box_plot_ex3.png bp = df.boxplot(column=['Col1','Col2'], by=['X','Y'])
- New in 0.7.3. You can create a scatter plot matrix using the
scatter_matrix
method inpandas.tools.plotting
:
.. ipython:: python from pandas.tools.plotting import scatter_matrix df = DataFrame(randn(1000, 4), columns=['a', 'b', 'c', 'd']) @savefig scatter_matrix_kde.png scatter_matrix(df, alpha=0.2, figsize=(6, 6), diagonal='kde')
New in 0.8.0 You can create density plots using the Series/DataFrame.plot and setting kind='kde':
.. ipython:: python :suppress: plt.figure();
.. ipython:: python ser = Series(randn(1000)) @savefig kde_plot.png ser.plot(kind='kde')
Andrews curves allow one to plot multivariate data as a large number of curves that are created using the attributes of samples as coefficients for Fourier series. By coloring these curves differently for each class it is possible to visualize data clustering. Curves belonging to samples of the same class will usually be closer together and form larger structures.
Note: The "Iris" dataset is available here.
.. ipython:: python from pandas import read_csv from pandas.tools.plotting import andrews_curves data = read_csv('data/iris.data') plt.figure() @savefig andrews_curves.png andrews_curves(data, 'Name')
Parallel coordinates is a plotting technique for plotting multivariate data. It allows one to see clusters in data and to estimate other statistics visually. Using parallel coordinates points are represented as connected line segments. Each vertical line represents one attribute. One set of connected line segments represents one data point. Points that tend to cluster will appear closer together.
.. ipython:: python from pandas import read_csv from pandas.tools.plotting import parallel_coordinates data = read_csv('data/iris.data') plt.figure() @savefig parallel_coordinates.png parallel_coordinates(data, 'Name')
Lag plots are used to check if a data set or time series is random. Random data should not exhibit any structure in the lag plot. Non-random structure implies that the underlying data are not random.
.. ipython:: python from pandas.tools.plotting import lag_plot plt.figure() data = Series(0.1 * rand(1000) + 0.9 * np.sin(np.linspace(-99 * np.pi, 99 * np.pi, num=1000))) @savefig lag_plot.png lag_plot(data)
Autocorrelation plots are often used for checking randomness in time series. This is done by computing autocorrelations for data values at varying time lags. If time series is random, such autocorrelations should be near zero for any and all time-lag separations. If time series is non-random then one or more of the autocorrelations will be significantly non-zero. The horizontal lines displayed in the plot correspond to 95% and 99% confidence bands. The dashed line is 99% confidence band.
.. ipython:: python from pandas.tools.plotting import autocorrelation_plot plt.figure() data = Series(0.7 * rand(1000) + 0.3 * np.sin(np.linspace(-9 * np.pi, 9 * np.pi, num=1000))) @savefig autocorrelation_plot.png autocorrelation_plot(data)
Bootstrap plots are used to visually assess the uncertainty of a statistic, such as mean, median, midrange, etc. A random subset of a specified size is selected from a data set, the statistic in question is computed for this subset and the process is repeated a specified number of times. Resulting plots and histograms are what constitutes the bootstrap plot.
.. ipython:: python from pandas.tools.plotting import bootstrap_plot data = Series(rand(1000)) @savefig bootstrap_plot.png bootstrap_plot(data, size=50, samples=500, color='grey')
RadViz is a way of visualizing multi-variate data. It is based on a simple spring tension minimization algorithm. Basically you set up a bunch of points in a plane. In our case they are equally spaced on a unit circle. Each point represents a single attribute. You then pretend that each sample in the data set is attached to each of these points by a spring, the stiffness of which is proportional to the numerical value of that attribute (they are normalized to unit interval). The point in the plane, where our sample settles to (where the forces acting on our sample are at an equilibrium) is where a dot representing our sample will be drawn. Depending on which class that sample belongs it will be colored differently.
Note: The "Iris" dataset is available here.
.. ipython:: python from pandas import read_csv from pandas.tools.plotting import radviz data = read_csv('data/iris.data') plt.figure() @savefig radviz.png radviz(data, 'Name')
A potential issue when plotting a large number of columns is that it can be difficult to distinguish some series due to repetition in the default colors. To remedy this, DataFrame plotting supports the use of the colormap=
argument, which accepts either a Matplotlib colormap or a string that is a name of a colormap registered with Matplotlib. A visualization of the default matplotlib colormaps is available here.
As matplotlib does not directly support colormaps for line-based plots, the colors are selected based on an even spacing determined by the number of columns in the DataFrame. There is no consideration made for background color, so some colormaps will produce lines that are not easily visible.
To use the jet colormap, we can simply pass 'jet'
to colormap=
.. ipython:: python df = DataFrame(randn(1000, 10), index=ts.index) df = df.cumsum() plt.figure() @savefig jet.png df.plot(colormap='jet')
or we can pass the colormap itself
.. ipython:: python from matplotlib import cm plt.figure() @savefig jet_cm.png df.plot(colormap=cm.jet)
Colormaps can also be used other plot types, like bar charts:
.. ipython:: python dd = DataFrame(randn(10, 10)).applymap(abs) dd = dd.cumsum() plt.figure() @savefig greens.png dd.plot(kind='bar', colormap='Greens')
Parallel coordinates charts:
.. ipython:: python plt.figure() @savefig parallel_gist_rainbow.png parallel_coordinates(data, 'Name', colormap='gist_rainbow')
Andrews curves charts:
.. ipython:: python plt.figure() @savefig andrews_curve_winter.png andrews_curves(data, 'Name', colormap='winter')