Skip to content

Commit 7e9e39b

Browse files
authored
Update README.md
1 parent 1fde6af commit 7e9e39b

File tree

1 file changed

+4
-1
lines changed

1 file changed

+4
-1
lines changed

README.md

Lines changed: 4 additions & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -44,13 +44,16 @@ You can download the module (raw Python file) from here: [DL-Utility-Module](htt
4444
### General-purpose regression module (for tabular dataset)
4545
I also implemented a general-purpose trainer module (`NN_trainer.py`) for regression task with tabular datasets. The idea is that you can simply read a dataset (e.g. a CSV file), choose the input and target variables, build a densely-connected neural net, train, and predict. The module gives you back a prediction function (trained) which can be used for any further prediction, analytics, or optimization task.
4646

47-
Check out the module [here](https://github.com/tirthajyoti/Deep-learning-with-Python/blob/master/utils/NN_trainer.py) and an example notebook here.
47+
Check out the module [here](https://github.com/tirthajyoti/Deep-learning-with-Python/blob/master/utils/NN_trainer.py) and an example notebook [here](https://github.com/tirthajyoti/Deep-learning-with-Python/blob/master/Notebooks/Demo_general_purpose_regression_module.ipynb).
4848

4949
## Notebooks
5050

5151
### Deep learning vs. linear model
5252
* We show a nonlinear function approximation task performed by linear model (polynomial degree) and a simple 1/2 hidden layer (densely connected) neural net to illustrate the difference and the capacity of deep neural nets to take advantage of larger datasets ([Here is the Notebook](https://github.com/tirthajyoti/Deep-learning-with-Python/blob/master/Notebooks/Function%20approximation%20by%20linear%20model%20and%20deep%20network.ipynb)).
5353

54+
### Demo of a general-purpose regression module
55+
* We implemented a general-purpose trainer module for regression task with tabular datasets. The idea is that you can simply read a dataset (e.g. a CSV file), choose the input and target variables, build a densely-connected neural net, train, predict, and save the model for deployment. This the demo notebook for that module ([Here is the Notebook](https://github.com/tirthajyoti/Deep-learning-with-Python/blob/master/Notebooks/Demo_general_purpose_regression_module.ipynb)).
56+
5457
### Simple Conv Net
5558
* [Fashion MNIST](https://github.com/zalandoresearch/fashion-mnist) image classification using densely connected network and 1/2/3 layer CNNs ([Here is the Notebook](https://github.com/tirthajyoti/Computer_vision/blob/master/Notebooks/Fashion_MNIST_using_CNN.ipynb)).
5659

0 commit comments

Comments
 (0)