forked from WebAssembly/binaryen
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathwasm-interpreter.h
1067 lines (986 loc) · 36.7 KB
/
wasm-interpreter.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
/*
* Copyright 2015 WebAssembly Community Group participants
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
//
// Simple WebAssembly interpreter. This operates directly on the AST,
// for simplicity and clarity. A goal is for it to be possible for
// people to read this code and understand WebAssembly semantics.
//
#ifndef wasm_wasm_interpreter_h
#define wasm_wasm_interpreter_h
#include <cmath>
#include <limits.h>
#include <sstream>
#include "support/bits.h"
#include "support/safe_integer.h"
#include "wasm.h"
#include "wasm-traversal.h"
#include "ir/module-utils.h"
#ifdef WASM_INTERPRETER_DEBUG
#include "wasm-printing.h"
#endif
namespace wasm {
using namespace cashew;
// Utilities
extern Name WASM, RETURN_FLOW;
enum {
maxCallDepth = 250
};
// Stuff that flows around during executing expressions: a literal, or a change in control flow.
class Flow {
public:
Flow() {}
Flow(Literal value) : value(value) {}
Flow(Name breakTo) : breakTo(breakTo) {}
Literal value;
Name breakTo; // if non-null, a break is going on
bool breaking() { return breakTo.is(); }
void clearIf(Name target) {
if (breakTo == target) {
breakTo.clear();
}
}
friend std::ostream& operator<<(std::ostream& o, Flow& flow) {
o << "(flow " << (flow.breakTo.is() ? flow.breakTo.str : "-") << " : " << flow.value << ')';
return o;
}
};
// A list of literals, for function calls
typedef std::vector<Literal> LiteralList;
// Debugging helpers
#ifdef WASM_INTERPRETER_DEBUG
class Indenter {
static int indentLevel;
const char* entryName;
public:
Indenter(const char* entry);
~Indenter();
static void print();
};
#define NOTE_ENTER(x) Indenter _int_blah(x); { \
Indenter::print(); \
std::cout << "visit " << x << " : " << curr << "\n"; }
#define NOTE_ENTER_(x) Indenter _int_blah(x); { \
Indenter::print(); \
std::cout << "visit " << x << "\n"; }
#define NOTE_NAME(p0) { \
Indenter::print(); \
std::cout << "name " << '(' << Name(p0) << ")\n"; }
#define NOTE_EVAL1(p0) { \
Indenter::print(); \
std::cout << "eval " #p0 " (" << p0 << ")\n"; }
#define NOTE_EVAL2(p0, p1) { \
Indenter::print(); \
std::cout << "eval " #p0 " (" << p0 << "), " #p1 " (" << p1 << ")\n"; }
#else // WASM_INTERPRETER_DEBUG
#define NOTE_ENTER(x)
#define NOTE_ENTER_(x)
#define NOTE_NAME(p0)
#define NOTE_EVAL1(p0)
#define NOTE_EVAL2(p0, p1)
#endif // WASM_INTERPRETER_DEBUG
// Execute an expression
template<typename SubType>
class ExpressionRunner : public Visitor<SubType, Flow> {
public:
Flow visit(Expression *curr) {
auto ret = Visitor<SubType, Flow>::visit(curr);
if (!ret.breaking() && (isConcreteType(curr->type) || isConcreteType(ret.value.type))) {
#if 1 // def WASM_INTERPRETER_DEBUG
if (ret.value.type != curr->type) {
std::cerr << "expected " << printType(curr->type) << ", seeing " << printType(ret.value.type) << " from\n" << curr << '\n';
}
#endif
assert(ret.value.type == curr->type);
}
return ret;
}
Flow visitBlock(Block *curr) {
NOTE_ENTER("Block");
// special-case Block, because Block nesting (in their first element) can be incredibly deep
std::vector<Block*> stack;
stack.push_back(curr);
while (curr->list.size() > 0 && curr->list[0]->is<Block>()) {
curr = curr->list[0]->cast<Block>();
stack.push_back(curr);
}
Flow flow;
auto* top = stack.back();
while (stack.size() > 0) {
curr = stack.back();
stack.pop_back();
if (flow.breaking()) {
flow.clearIf(curr->name);
continue;
}
auto& list = curr->list;
for (size_t i = 0; i < list.size(); i++) {
if (curr != top && i == 0) {
// one of the block recursions we already handled
continue;
}
flow = visit(list[i]);
if (flow.breaking()) {
flow.clearIf(curr->name);
break;
}
}
}
return flow;
}
Flow visitIf(If *curr) {
NOTE_ENTER("If");
Flow flow = visit(curr->condition);
if (flow.breaking()) return flow;
NOTE_EVAL1(flow.value);
if (flow.value.geti32()) {
Flow flow = visit(curr->ifTrue);
if (!flow.breaking() && !curr->ifFalse) flow.value = Literal(); // if_else returns a value, but if does not
return flow;
}
if (curr->ifFalse) return visit(curr->ifFalse);
return Flow();
}
Flow visitLoop(Loop *curr) {
NOTE_ENTER("Loop");
while (1) {
Flow flow = visit(curr->body);
if (flow.breaking()) {
if (flow.breakTo == curr->name) continue; // lol
}
return flow; // loop does not loop automatically, only continue achieves that
}
}
Flow visitBreak(Break *curr) {
NOTE_ENTER("Break");
bool condition = true;
Flow flow;
if (curr->value) {
flow = visit(curr->value);
if (flow.breaking()) return flow;
}
if (curr->condition) {
Flow conditionFlow = visit(curr->condition);
if (conditionFlow.breaking()) return conditionFlow;
condition = conditionFlow.value.getInteger() != 0;
if (!condition) return flow;
}
flow.breakTo = curr->name;
return flow;
}
Flow visitSwitch(Switch *curr) {
NOTE_ENTER("Switch");
Flow flow;
Literal value;
if (curr->value) {
flow = visit(curr->value);
if (flow.breaking()) return flow;
value = flow.value;
NOTE_EVAL1(value);
}
flow = visit(curr->condition);
if (flow.breaking()) return flow;
int64_t index = flow.value.getInteger();
Name target = curr->default_;
if (index >= 0 && (size_t)index < curr->targets.size()) {
target = curr->targets[(size_t)index];
}
flow.breakTo = target;
flow.value = value;
return flow;
}
Flow visitConst(Const *curr) {
NOTE_ENTER("Const");
NOTE_EVAL1(curr->value);
return Flow(curr->value); // heh
}
// Unary and Binary nodes, the core math computations. We mostly just
// delegate to the Literal::* methods, except we handle traps here.
Flow visitUnary(Unary *curr) {
NOTE_ENTER("Unary");
Flow flow = visit(curr->value);
if (flow.breaking()) return flow;
Literal value = flow.value;
NOTE_EVAL1(value);
switch (curr->op) {
case ClzInt32:
case ClzInt64: return value.countLeadingZeroes();
case CtzInt32:
case CtzInt64: return value.countTrailingZeroes();
case PopcntInt32:
case PopcntInt64: return value.popCount();
case EqZInt32:
case EqZInt64: return value.eqz();
case ReinterpretInt32: return value.castToF32();
case ReinterpretInt64: return value.castToF64();
case ExtendSInt32: return value.extendToSI64();
case ExtendUInt32: return value.extendToUI64();
case WrapInt64: return value.truncateToI32();
case ConvertUInt32ToFloat32:
case ConvertUInt64ToFloat32: return value.convertUToF32();
case ConvertUInt32ToFloat64:
case ConvertUInt64ToFloat64: return value.convertUToF64();
case ConvertSInt32ToFloat32:
case ConvertSInt64ToFloat32: return value.convertSToF32();
case ConvertSInt32ToFloat64:
case ConvertSInt64ToFloat64: return value.convertSToF64();
case ExtendS8Int32:
case ExtendS8Int64: return value.extendS8();
case ExtendS16Int32:
case ExtendS16Int64: return value.extendS16();
case ExtendS32Int64: return value.extendS32();
case NegFloat32:
case NegFloat64: return value.neg();
case AbsFloat32:
case AbsFloat64: return value.abs();
case CeilFloat32:
case CeilFloat64: return value.ceil();
case FloorFloat32:
case FloorFloat64: return value.floor();
case TruncFloat32:
case TruncFloat64: return value.trunc();
case NearestFloat32:
case NearestFloat64: return value.nearbyint();
case SqrtFloat32:
case SqrtFloat64: return value.sqrt();
case TruncSFloat32ToInt32:
case TruncSFloat64ToInt32:
case TruncSFloat32ToInt64:
case TruncSFloat64ToInt64: return truncSFloat(curr, value);
case TruncUFloat32ToInt32:
case TruncUFloat64ToInt32:
case TruncUFloat32ToInt64:
case TruncUFloat64ToInt64: return truncUFloat(curr, value);
case ReinterpretFloat32: return value.castToI32();
case PromoteFloat32: return value.extendToF64();
case ReinterpretFloat64: return value.castToI64();
case DemoteFloat64: return value.demote();
default: WASM_UNREACHABLE();
}
}
Flow visitBinary(Binary *curr) {
NOTE_ENTER("Binary");
Flow flow = visit(curr->left);
if (flow.breaking()) return flow;
Literal left = flow.value;
flow = visit(curr->right);
if (flow.breaking()) return flow;
Literal right = flow.value;
NOTE_EVAL2(left, right);
assert(isConcreteType(curr->left->type) ? left.type == curr->left->type : true);
assert(isConcreteType(curr->right->type) ? right.type == curr->right->type : true);
switch (curr->op) {
case AddInt32:
case AddInt64:
case AddFloat32:
case AddFloat64: return left.add(right);
case SubInt32:
case SubInt64:
case SubFloat32:
case SubFloat64: return left.sub(right);
case MulInt32:
case MulInt64:
case MulFloat32:
case MulFloat64: return left.mul(right);
case DivSInt32: {
if (right.getInteger() == 0) trap("i32.div_s by 0");
if (left.getInteger() == std::numeric_limits<int32_t>::min() && right.getInteger() == -1) trap("i32.div_s overflow"); // signed division overflow
return left.divS(right);
}
case DivUInt32: {
if (right.getInteger() == 0) trap("i32.div_u by 0");
return left.divU(right);
}
case RemSInt32: {
if (right.getInteger() == 0) trap("i32.rem_s by 0");
if (left.getInteger() == std::numeric_limits<int32_t>::min() && right.getInteger() == -1) return Literal(int32_t(0));
return left.remS(right);
}
case RemUInt32: {
if (right.getInteger() == 0) trap("i32.rem_u by 0");
return left.remU(right);
}
case DivSInt64: {
if (right.getInteger() == 0) trap("i64.div_s by 0");
if (left.getInteger() == LLONG_MIN && right.getInteger() == -1LL) trap("i64.div_s overflow"); // signed division overflow
return left.divS(right);
}
case DivUInt64: {
if (right.getInteger() == 0) trap("i64.div_u by 0");
return left.divU(right);
}
case RemSInt64: {
if (right.getInteger() == 0) trap("i64.rem_s by 0");
if (left.getInteger() == LLONG_MIN && right.getInteger() == -1LL) return Literal(int64_t(0));
return left.remS(right);
}
case RemUInt64: {
if (right.getInteger() == 0) trap("i64.rem_u by 0");
return left.remU(right);
}
case DivFloat32:
case DivFloat64: return left.div(right);
case AndInt32:
case AndInt64: return left.and_(right);
case OrInt32:
case OrInt64: return left.or_(right);
case XorInt32:
case XorInt64: return left.xor_(right);
case ShlInt32:
case ShlInt64: return left.shl(right);
case ShrUInt32:
case ShrUInt64: return left.shrU(right);
case ShrSInt32:
case ShrSInt64: return left.shrS(right);
case RotLInt32:
case RotLInt64: return left.rotL(right);
case RotRInt32:
case RotRInt64: return left.rotR(right);
case EqInt32:
case EqInt64:
case EqFloat32:
case EqFloat64: return left.eq(right);
case NeInt32:
case NeInt64:
case NeFloat32:
case NeFloat64: return left.ne(right);
case LtSInt32:
case LtSInt64: return left.ltS(right);
case LtUInt32:
case LtUInt64: return left.ltU(right);
case LeSInt32:
case LeSInt64: return left.leS(right);
case LeUInt32:
case LeUInt64: return left.leU(right);
case GtSInt32:
case GtSInt64: return left.gtS(right);
case GtUInt32:
case GtUInt64: return left.gtU(right);
case GeSInt32:
case GeSInt64: return left.geS(right);
case GeUInt32:
case GeUInt64: return left.geU(right);
case LtFloat32:
case LtFloat64: return left.lt(right);
case LeFloat32:
case LeFloat64: return left.le(right);
case GtFloat32:
case GtFloat64: return left.gt(right);
case GeFloat32:
case GeFloat64: return left.ge(right);
case CopySignFloat32:
case CopySignFloat64: return left.copysign(right);
case MinFloat32:
case MinFloat64: return left.min(right);
case MaxFloat32:
case MaxFloat64: return left.max(right);
default: WASM_UNREACHABLE();
}
}
Flow visitSelect(Select *curr) {
NOTE_ENTER("Select");
Flow ifTrue = visit(curr->ifTrue);
if (ifTrue.breaking()) return ifTrue;
Flow ifFalse = visit(curr->ifFalse);
if (ifFalse.breaking()) return ifFalse;
Flow condition = visit(curr->condition);
if (condition.breaking()) return condition;
NOTE_EVAL1(condition.value);
return condition.value.geti32() ? ifTrue : ifFalse; // ;-)
}
Flow visitDrop(Drop *curr) {
NOTE_ENTER("Drop");
Flow value = visit(curr->value);
if (value.breaking()) return value;
return Flow();
}
Flow visitReturn(Return *curr) {
NOTE_ENTER("Return");
Flow flow;
if (curr->value) {
flow = visit(curr->value);
if (flow.breaking()) return flow;
NOTE_EVAL1(flow.value);
}
flow.breakTo = RETURN_FLOW;
return flow;
}
Flow visitNop(Nop *curr) {
NOTE_ENTER("Nop");
return Flow();
}
Flow visitUnreachable(Unreachable *curr) {
NOTE_ENTER("Unreachable");
trap("unreachable");
WASM_UNREACHABLE();
}
Literal truncSFloat(Unary* curr, Literal value) {
double val = value.getFloat();
if (std::isnan(val)) trap("truncSFloat of nan");
if (curr->type == i32) {
if (value.type == f32) {
if (!isInRangeI32TruncS(value.reinterpreti32())) trap("i32.truncSFloat overflow");
} else {
if (!isInRangeI32TruncS(value.reinterpreti64())) trap("i32.truncSFloat overflow");
}
return Literal(int32_t(val));
} else {
if (value.type == f32) {
if (!isInRangeI64TruncS(value.reinterpreti32())) trap("i64.truncSFloat overflow");
} else {
if (!isInRangeI64TruncS(value.reinterpreti64())) trap("i64.truncSFloat overflow");
}
return Literal(int64_t(val));
}
}
Literal truncUFloat(Unary* curr, Literal value) {
double val = value.getFloat();
if (std::isnan(val)) trap("truncUFloat of nan");
if (curr->type == i32) {
if (value.type == f32) {
if (!isInRangeI32TruncU(value.reinterpreti32())) trap("i32.truncUFloat overflow");
} else {
if (!isInRangeI32TruncU(value.reinterpreti64())) trap("i32.truncUFloat overflow");
}
return Literal(uint32_t(val));
} else {
if (value.type == f32) {
if (!isInRangeI64TruncU(value.reinterpreti32())) trap("i64.truncUFloat overflow");
} else {
if (!isInRangeI64TruncU(value.reinterpreti64())) trap("i64.truncUFloat overflow");
}
return Literal(uint64_t(val));
}
}
virtual void trap(const char* why) {
WASM_UNREACHABLE();
}
};
// Execute an constant expression in a global init or memory offset
template<typename GlobalManager>
class ConstantExpressionRunner : public ExpressionRunner<ConstantExpressionRunner<GlobalManager>> {
GlobalManager& globals;
public:
ConstantExpressionRunner(GlobalManager& globals) : globals(globals) {}
Flow visitLoop(Loop* curr) { WASM_UNREACHABLE(); }
Flow visitCall(Call* curr) { WASM_UNREACHABLE(); }
Flow visitCallIndirect(CallIndirect* curr) { WASM_UNREACHABLE(); }
Flow visitGetLocal(GetLocal *curr) { WASM_UNREACHABLE(); }
Flow visitSetLocal(SetLocal *curr) { WASM_UNREACHABLE(); }
Flow visitGetGlobal(GetGlobal *curr) {
return Flow(globals[curr->name]);
}
Flow visitSetGlobal(SetGlobal *curr) { WASM_UNREACHABLE(); }
Flow visitLoad(Load *curr) { WASM_UNREACHABLE(); }
Flow visitStore(Store *curr) { WASM_UNREACHABLE(); }
Flow visitHost(Host *curr) { WASM_UNREACHABLE(); }
};
//
// An instance of a WebAssembly module, which can execute it via AST interpretation.
//
// To embed this interpreter, you need to provide an ExternalInterface instance
// (see below) which provides the embedding-specific details, that is, how to
// connect to the embedding implementation.
//
// To call into the interpreter, use callExport.
//
template<typename GlobalManager, typename SubType>
class ModuleInstanceBase {
public:
//
// You need to implement one of these to create a concrete interpreter. The
// ExternalInterface provides embedding-specific functionality like calling
// an imported function or accessing memory.
//
struct ExternalInterface {
virtual void init(Module& wasm, SubType& instance) {}
virtual void importGlobals(GlobalManager& globals, Module& wasm) = 0;
virtual Literal callImport(Function* import, LiteralList& arguments) = 0;
virtual Literal callTable(Index index, LiteralList& arguments, Type result, SubType& instance) = 0;
virtual void growMemory(Address oldSize, Address newSize) = 0;
virtual void trap(const char* why) = 0;
// the default impls for load and store switch on the sizes. you can either
// customize load/store, or the sub-functions which they call
virtual Literal load(Load* load, Address addr) {
switch (load->type) {
case i32: {
switch (load->bytes) {
case 1: return load->signed_ ? Literal((int32_t)load8s(addr)) : Literal((int32_t)load8u(addr));
case 2: return load->signed_ ? Literal((int32_t)load16s(addr)) : Literal((int32_t)load16u(addr));
case 4: return Literal((int32_t)load32s(addr));
default: WASM_UNREACHABLE();
}
break;
}
case i64: {
switch (load->bytes) {
case 1: return load->signed_ ? Literal((int64_t)load8s(addr)) : Literal((int64_t)load8u(addr));
case 2: return load->signed_ ? Literal((int64_t)load16s(addr)) : Literal((int64_t)load16u(addr));
case 4: return load->signed_ ? Literal((int64_t)load32s(addr)) : Literal((int64_t)load32u(addr));
case 8: return Literal((int64_t)load64s(addr));
default: WASM_UNREACHABLE();
}
break;
}
case f32: return Literal(load32u(addr)).castToF32();
case f64: return Literal(load64u(addr)).castToF64();
default: WASM_UNREACHABLE();
}
}
virtual void store(Store* store, Address addr, Literal value) {
switch (store->valueType) {
case i32: {
switch (store->bytes) {
case 1: store8(addr, value.geti32()); break;
case 2: store16(addr, value.geti32()); break;
case 4: store32(addr, value.geti32()); break;
default: WASM_UNREACHABLE();
}
break;
}
case i64: {
switch (store->bytes) {
case 1: store8(addr, value.geti64()); break;
case 2: store16(addr, value.geti64()); break;
case 4: store32(addr, value.geti64()); break;
case 8: store64(addr, value.geti64()); break;
default: WASM_UNREACHABLE();
}
break;
}
// write floats carefully, ensuring all bits reach memory
case f32: store32(addr, value.reinterpreti32()); break;
case f64: store64(addr, value.reinterpreti64()); break;
default: WASM_UNREACHABLE();
}
}
virtual int8_t load8s(Address addr) { WASM_UNREACHABLE(); }
virtual uint8_t load8u(Address addr) { WASM_UNREACHABLE(); }
virtual int16_t load16s(Address addr) { WASM_UNREACHABLE(); }
virtual uint16_t load16u(Address addr) { WASM_UNREACHABLE(); }
virtual int32_t load32s(Address addr) { WASM_UNREACHABLE(); }
virtual uint32_t load32u(Address addr) { WASM_UNREACHABLE(); }
virtual int64_t load64s(Address addr) { WASM_UNREACHABLE(); }
virtual uint64_t load64u(Address addr) { WASM_UNREACHABLE(); }
virtual void store8(Address addr, int8_t value) { WASM_UNREACHABLE(); }
virtual void store16(Address addr, int16_t value) { WASM_UNREACHABLE(); }
virtual void store32(Address addr, int32_t value) { WASM_UNREACHABLE(); }
virtual void store64(Address addr, int64_t value) { WASM_UNREACHABLE(); }
};
SubType* self() {
return static_cast<SubType*>(this);
}
Module& wasm;
// Values of globals
GlobalManager globals;
ModuleInstanceBase(Module& wasm, ExternalInterface* externalInterface) : wasm(wasm), externalInterface(externalInterface) {
// import globals from the outside
externalInterface->importGlobals(globals, wasm);
// prepare memory
memorySize = wasm.memory.initial;
// generate internal (non-imported) globals
ModuleUtils::iterDefinedGlobals(wasm, [&](Global* global) {
globals[global->name] = ConstantExpressionRunner<GlobalManager>(globals).visit(global->init).value;
});
// initialize the rest of the external interface
externalInterface->init(wasm, *self());
// run start, if present
if (wasm.start.is()) {
LiteralList arguments;
callFunction(wasm.start, arguments);
}
}
// call an exported function
Literal callExport(Name name, const LiteralList& arguments) {
Export *export_ = wasm.getExportOrNull(name);
if (!export_) externalInterface->trap("callExport not found");
return callFunction(export_->value, arguments);
}
Literal callExport(Name name) {
return callExport(name, LiteralList());
}
// get an exported global
Literal getExport(Name name) {
Export *export_ = wasm.getExportOrNull(name);
if (!export_) externalInterface->trap("getExport external not found");
Name internalName = export_->value;
auto iter = globals.find(internalName);
if (iter == globals.end()) externalInterface->trap("getExport internal not found");
return iter->second;
}
std::string printFunctionStack() {
std::string ret = "/== (binaryen interpreter stack trace)\n";
for (int i = int(functionStack.size()) - 1; i >= 0; i--) {
ret += std::string("|: ") + functionStack[i].str + "\n";
}
ret += std::string("\\==\n");
return ret;
}
private:
// Keep a record of call depth, to guard against excessive recursion.
size_t callDepth;
// Function name stack. We maintain this explicitly to allow printing of
// stack traces.
std::vector<Name> functionStack;
public:
// Call a function, starting an invocation.
Literal callFunction(Name name, const LiteralList& arguments) {
// if the last call ended in a jump up the stack, it might have left stuff for us to clean up here
callDepth = 0;
functionStack.clear();
return callFunctionInternal(name, arguments);
}
// Internal function call. Must be public so that callTable implementations can use it (refactor?)
Literal callFunctionInternal(Name name, const LiteralList& arguments) {
class FunctionScope {
public:
std::vector<Literal> locals;
Function* function;
FunctionScope(Function* function, const LiteralList& arguments)
: function(function) {
if (function->params.size() != arguments.size()) {
std::cerr << "Function `" << function->name << "` expects "
<< function->params.size() << " parameters, got "
<< arguments.size() << " arguments." << std::endl;
WASM_UNREACHABLE();
}
locals.resize(function->getNumLocals());
for (size_t i = 0; i < function->getNumLocals(); i++) {
if (i < arguments.size()) {
assert(function->isParam(i));
if (function->params[i] != arguments[i].type) {
std::cerr << "Function `" << function->name << "` expects type "
<< printType(function->params[i])
<< " for parameter " << i << ", got "
<< printType(arguments[i].type) << "." << std::endl;
WASM_UNREACHABLE();
}
locals[i] = arguments[i];
} else {
assert(function->isVar(i));
locals[i].type = function->getLocalType(i);
}
}
}
};
// Executes expressions with concrete runtime info, the function and module at runtime
class RuntimeExpressionRunner : public ExpressionRunner<RuntimeExpressionRunner> {
ModuleInstanceBase& instance;
FunctionScope& scope;
public:
RuntimeExpressionRunner(ModuleInstanceBase& instance, FunctionScope& scope) : instance(instance), scope(scope) {}
Flow generateArguments(const ExpressionList& operands, LiteralList& arguments) {
NOTE_ENTER_("generateArguments");
arguments.reserve(operands.size());
for (auto expression : operands) {
Flow flow = this->visit(expression);
if (flow.breaking()) return flow;
NOTE_EVAL1(flow.value);
arguments.push_back(flow.value);
}
return Flow();
}
Flow visitCall(Call *curr) {
NOTE_ENTER("Call");
NOTE_NAME(curr->target);
LiteralList arguments;
Flow flow = generateArguments(curr->operands, arguments);
if (flow.breaking()) return flow;
auto* func = instance.wasm.getFunction(curr->target);
Flow ret;
if (func->imported()) {
ret = instance.externalInterface->callImport(func, arguments);
} else {
ret = instance.callFunctionInternal(curr->target, arguments);
}
#ifdef WASM_INTERPRETER_DEBUG
std::cout << "(returned to " << scope.function->name << ")\n";
#endif
return ret;
}
Flow visitCallIndirect(CallIndirect *curr) {
NOTE_ENTER("CallIndirect");
LiteralList arguments;
Flow flow = generateArguments(curr->operands, arguments);
if (flow.breaking()) return flow;
Flow target = this->visit(curr->target);
if (target.breaking()) return target;
Index index = target.value.geti32();
return instance.externalInterface->callTable(index, arguments, curr->type, *instance.self());
}
Flow visitGetLocal(GetLocal *curr) {
NOTE_ENTER("GetLocal");
auto index = curr->index;
NOTE_EVAL1(index);
NOTE_EVAL1(scope.locals[index]);
return scope.locals[index];
}
Flow visitSetLocal(SetLocal *curr) {
NOTE_ENTER("SetLocal");
auto index = curr->index;
Flow flow = this->visit(curr->value);
if (flow.breaking()) return flow;
NOTE_EVAL1(index);
NOTE_EVAL1(flow.value);
assert(curr->isTee() ? flow.value.type == curr->type : true);
scope.locals[index] = flow.value;
return curr->isTee() ? flow : Flow();
}
Flow visitGetGlobal(GetGlobal *curr) {
NOTE_ENTER("GetGlobal");
auto name = curr->name;
NOTE_EVAL1(name);
assert(instance.globals.find(name) != instance.globals.end());
NOTE_EVAL1(instance.globals[name]);
return instance.globals[name];
}
Flow visitSetGlobal(SetGlobal *curr) {
NOTE_ENTER("SetGlobal");
auto name = curr->name;
Flow flow = this->visit(curr->value);
if (flow.breaking()) return flow;
NOTE_EVAL1(name);
NOTE_EVAL1(flow.value);
instance.globals[name] = flow.value;
return Flow();
}
Flow visitLoad(Load *curr) {
NOTE_ENTER("Load");
Flow flow = this->visit(curr->ptr);
if (flow.breaking()) return flow;
NOTE_EVAL1(flow);
auto addr = instance.getFinalAddress(curr, flow.value);
auto ret = instance.externalInterface->load(curr, addr);
NOTE_EVAL1(addr);
NOTE_EVAL1(ret);
return ret;
}
Flow visitStore(Store *curr) {
NOTE_ENTER("Store");
Flow ptr = this->visit(curr->ptr);
if (ptr.breaking()) return ptr;
Flow value = this->visit(curr->value);
if (value.breaking()) return value;
auto addr = instance.getFinalAddress(curr, ptr.value);
NOTE_EVAL1(addr);
NOTE_EVAL1(value);
instance.externalInterface->store(curr, addr, value.value);
return Flow();
}
Flow visitAtomicRMW(AtomicRMW *curr) {
NOTE_ENTER("AtomicRMW");
Flow ptr = this->visit(curr->ptr);
if (ptr.breaking()) return ptr;
auto value = this->visit(curr->value);
if (value.breaking()) return value;
NOTE_EVAL1(ptr);
auto addr = instance.getFinalAddress(curr, ptr.value);
NOTE_EVAL1(addr);
NOTE_EVAL1(value);
auto loaded = instance.doAtomicLoad(addr, curr->bytes, curr->type);
NOTE_EVAL1(loaded);
auto computed = value.value;
switch (curr->op) {
case Add: computed = computed.add(value.value); break;
case Sub: computed = computed.sub(value.value); break;
case And: computed = computed.and_(value.value); break;
case Or: computed = computed.or_(value.value); break;
case Xor: computed = computed.xor_(value.value); break;
case Xchg: computed = value.value; break;
default: WASM_UNREACHABLE();
}
instance.doAtomicStore(addr, curr->bytes, computed);
return loaded;
}
Flow visitAtomicCmpxchg(AtomicCmpxchg *curr) {
NOTE_ENTER("AtomicCmpxchg");
Flow ptr = this->visit(curr->ptr);
if (ptr.breaking()) return ptr;
NOTE_EVAL1(ptr);
auto expected = this->visit(curr->expected);
if (expected.breaking()) return expected;
auto replacement = this->visit(curr->replacement);
if (replacement.breaking()) return replacement;
auto addr = instance.getFinalAddress(curr, ptr.value);
NOTE_EVAL1(addr);
NOTE_EVAL1(expected);
NOTE_EVAL1(replacement);
auto loaded = instance.doAtomicLoad(addr, curr->bytes, curr->type);
NOTE_EVAL1(loaded);
if (loaded == expected.value) {
instance.doAtomicStore(addr, curr->bytes, replacement.value);
}
return loaded;
}
Flow visitAtomicWait(AtomicWait *curr) {
NOTE_ENTER("AtomicWait");
Flow ptr = this->visit(curr->ptr);
if (ptr.breaking()) return ptr;
NOTE_EVAL1(ptr);
auto expected = this->visit(curr->expected);
NOTE_EVAL1(expected);
if (expected.breaking()) return expected;
auto timeout = this->visit(curr->timeout);
NOTE_EVAL1(timeout);
if (timeout.breaking()) return timeout;
auto bytes = getTypeSize(curr->expectedType);
auto addr = instance.getFinalAddress(ptr.value, bytes);
auto loaded = instance.doAtomicLoad(addr, bytes, curr->expectedType);
NOTE_EVAL1(loaded);
if (loaded != expected.value) {
return Literal(int32_t(1)); // not equal
}
// TODO: add threads support!
// for now, just assume we are woken up
return Literal(int32_t(0)); // woken up
}
Flow visitAtomicWake(AtomicWake *curr) {
NOTE_ENTER("AtomicWake");
Flow ptr = this->visit(curr->ptr);
if (ptr.breaking()) return ptr;
NOTE_EVAL1(ptr);
auto count = this->visit(curr->wakeCount);
NOTE_EVAL1(count);
if (count.breaking()) return count;
// TODO: add threads support!
return Literal(int32_t(0)); // none woken up
}
Flow visitHost(Host *curr) {
NOTE_ENTER("Host");
switch (curr->op) {
case CurrentMemory: return Literal(int32_t(instance.memorySize));
case GrowMemory: {
auto fail = Literal(int32_t(-1));
Flow flow = this->visit(curr->operands[0]);
if (flow.breaking()) return flow;
int32_t ret = instance.memorySize;
uint32_t delta = flow.value.geti32();
if (delta > uint32_t(-1) /Memory::kPageSize) return fail;
if (instance.memorySize >= uint32_t(-1) - delta) return fail;
uint32_t newSize = instance.memorySize + delta;
if (newSize > instance.wasm.memory.max) return fail;
instance.externalInterface->growMemory(instance.memorySize * Memory::kPageSize, newSize * Memory::kPageSize);
instance.memorySize = newSize;
return Literal(int32_t(ret));
}
default: WASM_UNREACHABLE();
}
}
void trap(const char* why) override {
instance.externalInterface->trap(why);
}
};
if (callDepth > maxCallDepth) externalInterface->trap("stack limit");
auto previousCallDepth = callDepth;
callDepth++;
auto previousFunctionStackSize = functionStack.size();
functionStack.push_back(name);
Function *function = wasm.getFunction(name);
assert(function);
FunctionScope scope(function, arguments);
#ifdef WASM_INTERPRETER_DEBUG
std::cout << "entering " << function->name
<< "\n with arguments:\n";
for (unsigned i = 0; i < arguments.size(); ++i) {
std::cout << " $" << i << ": " << arguments[i] << '\n';
}
#endif
Flow flow = RuntimeExpressionRunner(*this, scope).visit(function->body);
assert(!flow.breaking() || flow.breakTo == RETURN_FLOW); // cannot still be breaking, it means we missed our stop
Literal ret = flow.value;
if (function->result != ret.type) {
std::cerr << "calling " << function->name << " resulted in " << ret << " but the function type is " << function->result << '\n';
WASM_UNREACHABLE();
}
callDepth = previousCallDepth; // may decrease more than one, if we jumped up the stack
// if we jumped up the stack, we also need to pop higher frames
while (functionStack.size() > previousFunctionStackSize) {
functionStack.pop_back();
}
#ifdef WASM_INTERPRETER_DEBUG
std::cout << "exiting " << function->name << " with " << ret << '\n';
#endif
return ret;
}
protected:
Address memorySize; // in pages
void trapIfGt(uint64_t lhs, uint64_t rhs, const char* msg) {
if (lhs > rhs) {
std::stringstream ss;
ss << msg << ": " << lhs << " > " << rhs;
externalInterface->trap(ss.str().c_str());
}
}
template <class LS>
Address getFinalAddress(LS* curr, Literal ptr) {