forked from WebAssembly/binaryen
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathwasm-traversal.h
818 lines (737 loc) · 32 KB
/
wasm-traversal.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
/*
* Copyright 2016 WebAssembly Community Group participants
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
//
// WebAssembly AST visitor. Useful for anything that wants to do something
// different for each AST node type, like printing, interpreting, etc.
//
// This class is specifically designed as a template to avoid virtual function
// call overhead. To write a visitor, derive from this class as follows:
//
// struct MyVisitor : public WasmVisitor<MyVisitor> { .. }
//
#ifndef wasm_wasm_traversal_h
#define wasm_wasm_traversal_h
#include "wasm.h"
#include "support/threads.h"
namespace wasm {
// A generic visitor, defaulting to doing nothing on each visit
template<typename SubType, typename ReturnType = void>
struct Visitor {
// Expression visitors
ReturnType visitBlock(Block* curr) { return ReturnType(); }
ReturnType visitIf(If* curr) { return ReturnType(); }
ReturnType visitLoop(Loop* curr) { return ReturnType(); }
ReturnType visitBreak(Break* curr) { return ReturnType(); }
ReturnType visitSwitch(Switch* curr) { return ReturnType(); }
ReturnType visitCall(Call* curr) { return ReturnType(); }
ReturnType visitCallIndirect(CallIndirect* curr) { return ReturnType(); }
ReturnType visitGetLocal(GetLocal* curr) { return ReturnType(); }
ReturnType visitSetLocal(SetLocal* curr) { return ReturnType(); }
ReturnType visitGetGlobal(GetGlobal* curr) { return ReturnType(); }
ReturnType visitSetGlobal(SetGlobal* curr) { return ReturnType(); }
ReturnType visitLoad(Load* curr) { return ReturnType(); }
ReturnType visitStore(Store* curr) { return ReturnType(); }
ReturnType visitAtomicRMW(AtomicRMW* curr) { return ReturnType(); }
ReturnType visitAtomicCmpxchg(AtomicCmpxchg* curr) { return ReturnType(); }
ReturnType visitAtomicWait(AtomicWait* curr) { return ReturnType(); }
ReturnType visitAtomicWake(AtomicWake* curr) { return ReturnType(); }
ReturnType visitConst(Const* curr) { return ReturnType(); }
ReturnType visitUnary(Unary* curr) { return ReturnType(); }
ReturnType visitBinary(Binary* curr) { return ReturnType(); }
ReturnType visitSelect(Select* curr) { return ReturnType(); }
ReturnType visitDrop(Drop* curr) { return ReturnType(); }
ReturnType visitReturn(Return* curr) { return ReturnType(); }
ReturnType visitHost(Host* curr) { return ReturnType(); }
ReturnType visitNop(Nop* curr) { return ReturnType(); }
ReturnType visitUnreachable(Unreachable* curr) { return ReturnType(); }
// Module-level visitors
ReturnType visitFunctionType(FunctionType* curr) { return ReturnType(); }
ReturnType visitExport(Export* curr) { return ReturnType(); }
ReturnType visitGlobal(Global* curr) { return ReturnType(); }
ReturnType visitFunction(Function* curr) { return ReturnType(); }
ReturnType visitTable(Table* curr) { return ReturnType(); }
ReturnType visitMemory(Memory* curr) { return ReturnType(); }
ReturnType visitModule(Module* curr) { return ReturnType(); }
ReturnType visit(Expression* curr) {
assert(curr);
#define DELEGATE(CLASS_TO_VISIT) \
return static_cast<SubType*>(this)-> \
visit##CLASS_TO_VISIT(static_cast<CLASS_TO_VISIT*>(curr))
switch (curr->_id) {
case Expression::Id::BlockId: DELEGATE(Block);
case Expression::Id::IfId: DELEGATE(If);
case Expression::Id::LoopId: DELEGATE(Loop);
case Expression::Id::BreakId: DELEGATE(Break);
case Expression::Id::SwitchId: DELEGATE(Switch);
case Expression::Id::CallId: DELEGATE(Call);
case Expression::Id::CallIndirectId: DELEGATE(CallIndirect);
case Expression::Id::GetLocalId: DELEGATE(GetLocal);
case Expression::Id::SetLocalId: DELEGATE(SetLocal);
case Expression::Id::GetGlobalId: DELEGATE(GetGlobal);
case Expression::Id::SetGlobalId: DELEGATE(SetGlobal);
case Expression::Id::LoadId: DELEGATE(Load);
case Expression::Id::StoreId: DELEGATE(Store);
case Expression::Id::AtomicRMWId: DELEGATE(AtomicRMW);
case Expression::Id::AtomicCmpxchgId: DELEGATE(AtomicCmpxchg);
case Expression::Id::AtomicWaitId: DELEGATE(AtomicWait);
case Expression::Id::AtomicWakeId: DELEGATE(AtomicWake);
case Expression::Id::ConstId: DELEGATE(Const);
case Expression::Id::UnaryId: DELEGATE(Unary);
case Expression::Id::BinaryId: DELEGATE(Binary);
case Expression::Id::SelectId: DELEGATE(Select);
case Expression::Id::DropId: DELEGATE(Drop);
case Expression::Id::ReturnId: DELEGATE(Return);
case Expression::Id::HostId: DELEGATE(Host);
case Expression::Id::NopId: DELEGATE(Nop);
case Expression::Id::UnreachableId: DELEGATE(Unreachable);
case Expression::Id::InvalidId:
default: WASM_UNREACHABLE();
}
#undef DELEGATE
}
};
// A visitor which must be overridden for each visitor that is reached.
template<typename SubType, typename ReturnType = void>
struct OverriddenVisitor {
// Expression visitors, which must be overridden
#define UNIMPLEMENTED(CLASS_TO_VISIT) \
ReturnType visit##CLASS_TO_VISIT(CLASS_TO_VISIT* curr) { \
static_assert(&SubType::visit##CLASS_TO_VISIT != &OverriddenVisitor<SubType, ReturnType>::visit##CLASS_TO_VISIT, "Derived class must implement visit" #CLASS_TO_VISIT); \
WASM_UNREACHABLE(); \
}
UNIMPLEMENTED(Block);
UNIMPLEMENTED(If);
UNIMPLEMENTED(Loop);
UNIMPLEMENTED(Break);
UNIMPLEMENTED(Switch);
UNIMPLEMENTED(Call);
UNIMPLEMENTED(CallIndirect);
UNIMPLEMENTED(GetLocal);
UNIMPLEMENTED(SetLocal);
UNIMPLEMENTED(GetGlobal);
UNIMPLEMENTED(SetGlobal);
UNIMPLEMENTED(Load);
UNIMPLEMENTED(Store);
UNIMPLEMENTED(AtomicRMW);
UNIMPLEMENTED(AtomicCmpxchg);
UNIMPLEMENTED(AtomicWait);
UNIMPLEMENTED(AtomicWake);
UNIMPLEMENTED(Const);
UNIMPLEMENTED(Unary);
UNIMPLEMENTED(Binary);
UNIMPLEMENTED(Select);
UNIMPLEMENTED(Drop);
UNIMPLEMENTED(Return);
UNIMPLEMENTED(Host);
UNIMPLEMENTED(Nop);
UNIMPLEMENTED(Unreachable);
UNIMPLEMENTED(FunctionType);
UNIMPLEMENTED(Export);
UNIMPLEMENTED(Global);
UNIMPLEMENTED(Function);
UNIMPLEMENTED(Table);
UNIMPLEMENTED(Memory);
UNIMPLEMENTED(Module);
#undef UNIMPLEMENTED
ReturnType visit(Expression* curr) {
assert(curr);
#define DELEGATE(CLASS_TO_VISIT) \
return static_cast<SubType*>(this)-> \
visit##CLASS_TO_VISIT(static_cast<CLASS_TO_VISIT*>(curr))
switch (curr->_id) {
case Expression::Id::BlockId: DELEGATE(Block);
case Expression::Id::IfId: DELEGATE(If);
case Expression::Id::LoopId: DELEGATE(Loop);
case Expression::Id::BreakId: DELEGATE(Break);
case Expression::Id::SwitchId: DELEGATE(Switch);
case Expression::Id::CallId: DELEGATE(Call);
case Expression::Id::CallIndirectId: DELEGATE(CallIndirect);
case Expression::Id::GetLocalId: DELEGATE(GetLocal);
case Expression::Id::SetLocalId: DELEGATE(SetLocal);
case Expression::Id::GetGlobalId: DELEGATE(GetGlobal);
case Expression::Id::SetGlobalId: DELEGATE(SetGlobal);
case Expression::Id::LoadId: DELEGATE(Load);
case Expression::Id::StoreId: DELEGATE(Store);
case Expression::Id::AtomicRMWId: DELEGATE(AtomicRMW);
case Expression::Id::AtomicCmpxchgId: DELEGATE(AtomicCmpxchg);
case Expression::Id::AtomicWaitId: DELEGATE(AtomicWait);
case Expression::Id::AtomicWakeId: DELEGATE(AtomicWake);
case Expression::Id::ConstId: DELEGATE(Const);
case Expression::Id::UnaryId: DELEGATE(Unary);
case Expression::Id::BinaryId: DELEGATE(Binary);
case Expression::Id::SelectId: DELEGATE(Select);
case Expression::Id::DropId: DELEGATE(Drop);
case Expression::Id::ReturnId: DELEGATE(Return);
case Expression::Id::HostId: DELEGATE(Host);
case Expression::Id::NopId: DELEGATE(Nop);
case Expression::Id::UnreachableId: DELEGATE(Unreachable);
case Expression::Id::InvalidId:
default: WASM_UNREACHABLE();
}
#undef DELEGATE
}
};
// Visit with a single unified visitor, called on every node, instead of
// separate visit* per node
template<typename SubType, typename ReturnType = void>
struct UnifiedExpressionVisitor : public Visitor<SubType, ReturnType> {
// called on each node
ReturnType visitExpression(Expression* curr) { return ReturnType(); }
// redirects
ReturnType visitBlock(Block* curr) { return static_cast<SubType*>(this)->visitExpression(curr); }
ReturnType visitIf(If* curr) { return static_cast<SubType*>(this)->visitExpression(curr); }
ReturnType visitLoop(Loop* curr) { return static_cast<SubType*>(this)->visitExpression(curr); }
ReturnType visitBreak(Break* curr) { return static_cast<SubType*>(this)->visitExpression(curr); }
ReturnType visitSwitch(Switch* curr) { return static_cast<SubType*>(this)->visitExpression(curr); }
ReturnType visitCall(Call* curr) { return static_cast<SubType*>(this)->visitExpression(curr); }
ReturnType visitCallIndirect(CallIndirect* curr) { return static_cast<SubType*>(this)->visitExpression(curr); }
ReturnType visitGetLocal(GetLocal* curr) { return static_cast<SubType*>(this)->visitExpression(curr); }
ReturnType visitSetLocal(SetLocal* curr) { return static_cast<SubType*>(this)->visitExpression(curr); }
ReturnType visitGetGlobal(GetGlobal* curr) { return static_cast<SubType*>(this)->visitExpression(curr); }
ReturnType visitSetGlobal(SetGlobal* curr) { return static_cast<SubType*>(this)->visitExpression(curr); }
ReturnType visitLoad(Load* curr) { return static_cast<SubType*>(this)->visitExpression(curr); }
ReturnType visitStore(Store* curr) { return static_cast<SubType*>(this)->visitExpression(curr); }
ReturnType visitAtomicRMW(AtomicRMW* curr) { return static_cast<SubType*>(this)->visitExpression(curr); }
ReturnType visitAtomicCmpxchg(AtomicCmpxchg* curr) { return static_cast<SubType*>(this)->visitExpression(curr); }
ReturnType visitAtomicWait(AtomicWait* curr) { return static_cast<SubType*>(this)->visitExpression(curr); }
ReturnType visitAtomicWake(AtomicWake* curr) { return static_cast<SubType*>(this)->visitExpression(curr); }
ReturnType visitConst(Const* curr) { return static_cast<SubType*>(this)->visitExpression(curr); }
ReturnType visitUnary(Unary* curr) { return static_cast<SubType*>(this)->visitExpression(curr); }
ReturnType visitBinary(Binary* curr) { return static_cast<SubType*>(this)->visitExpression(curr); }
ReturnType visitSelect(Select* curr) { return static_cast<SubType*>(this)->visitExpression(curr); }
ReturnType visitDrop(Drop* curr) { return static_cast<SubType*>(this)->visitExpression(curr); }
ReturnType visitReturn(Return* curr) { return static_cast<SubType*>(this)->visitExpression(curr); }
ReturnType visitHost(Host* curr) { return static_cast<SubType*>(this)->visitExpression(curr); }
ReturnType visitNop(Nop* curr) { return static_cast<SubType*>(this)->visitExpression(curr); }
ReturnType visitUnreachable(Unreachable* curr) { return static_cast<SubType*>(this)->visitExpression(curr); }
};
//
// Base class for all WasmWalkers, which can traverse an AST
// and provide the option to replace nodes while doing so.
//
// Subclass and implement the visit*()
// calls to run code on different node types.
//
template<typename SubType, typename VisitorType>
struct Walker : public VisitorType {
// Useful methods for visitor implementions
// Replace the current node. You can call this in your visit*() methods.
// Note that the visit*() for the result node is not called for you (i.e.,
// just one visit*() method is called by the traversal; if you replace a node,
// and you want to process the output, you must do that explicitly).
Expression* replaceCurrent(Expression* expression) {
return *replacep = expression;
}
Expression* getCurrent() {
return *replacep;
}
Expression** getCurrentPointer() {
return replacep;
}
// Get the current module
Module* getModule() {
return currModule;
}
// Get the current function
Function* getFunction() {
return currFunction;
}
// Walk starting
void walkGlobal(Global* global) {
walk(global->init);
static_cast<SubType*>(this)->visitGlobal(global);
}
void walkFunction(Function* func) {
setFunction(func);
static_cast<SubType*>(this)->doWalkFunction(func);
static_cast<SubType*>(this)->visitFunction(func);
setFunction(nullptr);
}
void walkFunctionInModule(Function* func, Module* module) {
setModule(module);
setFunction(func);
static_cast<SubType*>(this)->doWalkFunction(func);
static_cast<SubType*>(this)->visitFunction(func);
setFunction(nullptr);
setModule(nullptr);
}
// override this to provide custom functionality
void doWalkFunction(Function* func) {
walk(func->body);
}
void walkTable(Table* table) {
for (auto& segment : table->segments) {
walk(segment.offset);
}
static_cast<SubType*>(this)->visitTable(table);
}
void walkMemory(Memory* memory) {
for (auto& segment : memory->segments) {
walk(segment.offset);
}
static_cast<SubType*>(this)->visitMemory(memory);
}
void walkModule(Module* module) {
setModule(module);
static_cast<SubType*>(this)->doWalkModule(module);
static_cast<SubType*>(this)->visitModule(module);
setModule(nullptr);
}
// override this to provide custom functionality
void doWalkModule(Module* module) {
// Dispatch statically through the SubType.
SubType* self = static_cast<SubType*>(this);
for (auto& curr : module->functionTypes) {
self->visitFunctionType(curr.get());
}
for (auto& curr : module->exports) {
self->visitExport(curr.get());
}
for (auto& curr : module->globals) {
if (curr->imported()) {
self->visitGlobal(curr.get());
} else {
self->walkGlobal(curr.get());
}
}
for (auto& curr : module->functions) {
if (curr->imported()) {
self->visitFunction(curr.get());
} else {
self->walkFunction(curr.get());
}
}
self->walkTable(&module->table);
self->walkMemory(&module->memory);
}
// Walk implementation. We don't use recursion as ASTs may be highly
// nested.
// Tasks receive the this pointer and a pointer to the pointer to operate on
typedef void (*TaskFunc)(SubType*, Expression**);
struct Task {
TaskFunc func;
Expression** currp;
Task(TaskFunc func, Expression** currp) : func(func), currp(currp) {}
};
void pushTask(TaskFunc func, Expression** currp) {
assert(*currp);
stack.emplace_back(func, currp);
}
void maybePushTask(TaskFunc func, Expression** currp) {
if (*currp) {
stack.emplace_back(func, currp);
}
}
Task popTask() {
auto ret = stack.back();
stack.pop_back();
return ret;
}
void walk(Expression*& root) {
assert(stack.size() == 0);
pushTask(SubType::scan, &root);
while (stack.size() > 0) {
auto task = popTask();
replacep = task.currp;
assert(*task.currp);
task.func(static_cast<SubType*>(this), task.currp);
}
}
// subclasses implement this to define the proper order of execution
static void scan(SubType* self, Expression** currp) { abort(); }
// task hooks to call visitors
static void doVisitBlock(SubType* self, Expression** currp) { self->visitBlock((*currp)->cast<Block>()); }
static void doVisitIf(SubType* self, Expression** currp) { self->visitIf((*currp)->cast<If>()); }
static void doVisitLoop(SubType* self, Expression** currp) { self->visitLoop((*currp)->cast<Loop>()); }
static void doVisitBreak(SubType* self, Expression** currp) { self->visitBreak((*currp)->cast<Break>()); }
static void doVisitSwitch(SubType* self, Expression** currp) { self->visitSwitch((*currp)->cast<Switch>()); }
static void doVisitCall(SubType* self, Expression** currp) { self->visitCall((*currp)->cast<Call>()); }
static void doVisitCallIndirect(SubType* self, Expression** currp) { self->visitCallIndirect((*currp)->cast<CallIndirect>()); }
static void doVisitGetLocal(SubType* self, Expression** currp) { self->visitGetLocal((*currp)->cast<GetLocal>()); }
static void doVisitSetLocal(SubType* self, Expression** currp) { self->visitSetLocal((*currp)->cast<SetLocal>()); }
static void doVisitGetGlobal(SubType* self, Expression** currp) { self->visitGetGlobal((*currp)->cast<GetGlobal>()); }
static void doVisitSetGlobal(SubType* self, Expression** currp) { self->visitSetGlobal((*currp)->cast<SetGlobal>()); }
static void doVisitLoad(SubType* self, Expression** currp) { self->visitLoad((*currp)->cast<Load>()); }
static void doVisitStore(SubType* self, Expression** currp) { self->visitStore((*currp)->cast<Store>()); }
static void doVisitAtomicRMW(SubType* self, Expression** currp) { self->visitAtomicRMW((*currp)->cast<AtomicRMW>()); }
static void doVisitAtomicCmpxchg(SubType* self, Expression** currp){ self->visitAtomicCmpxchg((*currp)->cast<AtomicCmpxchg>()); }
static void doVisitAtomicWait(SubType* self, Expression** currp) { self->visitAtomicWait((*currp)->cast<AtomicWait>()); }
static void doVisitAtomicWake(SubType* self, Expression** currp) { self->visitAtomicWake((*currp)->cast<AtomicWake>()); }
static void doVisitConst(SubType* self, Expression** currp) { self->visitConst((*currp)->cast<Const>()); }
static void doVisitUnary(SubType* self, Expression** currp) { self->visitUnary((*currp)->cast<Unary>()); }
static void doVisitBinary(SubType* self, Expression** currp) { self->visitBinary((*currp)->cast<Binary>()); }
static void doVisitSelect(SubType* self, Expression** currp) { self->visitSelect((*currp)->cast<Select>()); }
static void doVisitDrop(SubType* self, Expression** currp) { self->visitDrop((*currp)->cast<Drop>()); }
static void doVisitReturn(SubType* self, Expression** currp) { self->visitReturn((*currp)->cast<Return>()); }
static void doVisitHost(SubType* self, Expression** currp) { self->visitHost((*currp)->cast<Host>()); }
static void doVisitNop(SubType* self, Expression** currp) { self->visitNop((*currp)->cast<Nop>()); }
static void doVisitUnreachable(SubType* self, Expression** currp) { self->visitUnreachable((*currp)->cast<Unreachable>()); }
void setModule(Module* module) {
currModule = module;
}
void setFunction(Function* func) {
currFunction = func;
}
private:
Expression** replacep = nullptr; // the address of the current node, used to replace it
std::vector<Task> stack; // stack of tasks
Function* currFunction = nullptr; // current function being processed
Module* currModule = nullptr; // current module being processed
};
// Walks in post-order, i.e., children first. When there isn't an obvious
// order to operands, we follow them in order of execution.
template<typename SubType, typename VisitorType = Visitor<SubType>>
struct PostWalker : public Walker<SubType, VisitorType> {
static void scan(SubType* self, Expression** currp) {
Expression* curr = *currp;
switch (curr->_id) {
case Expression::Id::InvalidId: abort();
case Expression::Id::BlockId: {
self->pushTask(SubType::doVisitBlock, currp);
auto& list = curr->cast<Block>()->list;
for (int i = int(list.size()) - 1; i >= 0; i--) {
self->pushTask(SubType::scan, &list[i]);
}
break;
}
case Expression::Id::IfId: {
self->pushTask(SubType::doVisitIf, currp);
self->maybePushTask(SubType::scan, &curr->cast<If>()->ifFalse);
self->pushTask(SubType::scan, &curr->cast<If>()->ifTrue);
self->pushTask(SubType::scan, &curr->cast<If>()->condition);
break;
}
case Expression::Id::LoopId: {
self->pushTask(SubType::doVisitLoop, currp);
self->pushTask(SubType::scan, &curr->cast<Loop>()->body);
break;
}
case Expression::Id::BreakId: {
self->pushTask(SubType::doVisitBreak, currp);
self->maybePushTask(SubType::scan, &curr->cast<Break>()->condition);
self->maybePushTask(SubType::scan, &curr->cast<Break>()->value);
break;
}
case Expression::Id::SwitchId: {
self->pushTask(SubType::doVisitSwitch, currp);
self->pushTask(SubType::scan, &curr->cast<Switch>()->condition);
self->maybePushTask(SubType::scan, &curr->cast<Switch>()->value);
break;
}
case Expression::Id::CallId: {
self->pushTask(SubType::doVisitCall, currp);
auto& list = curr->cast<Call>()->operands;
for (int i = int(list.size()) - 1; i >= 0; i--) {
self->pushTask(SubType::scan, &list[i]);
}
break;
}
case Expression::Id::CallIndirectId: {
self->pushTask(SubType::doVisitCallIndirect, currp);
auto& list = curr->cast<CallIndirect>()->operands;
self->pushTask(SubType::scan, &curr->cast<CallIndirect>()->target);
for (int i = int(list.size()) - 1; i >= 0; i--) {
self->pushTask(SubType::scan, &list[i]);
}
break;
}
case Expression::Id::GetLocalId: {
self->pushTask(SubType::doVisitGetLocal, currp); // TODO: optimize leaves with a direct call?
break;
}
case Expression::Id::SetLocalId: {
self->pushTask(SubType::doVisitSetLocal, currp);
self->pushTask(SubType::scan, &curr->cast<SetLocal>()->value);
break;
}
case Expression::Id::GetGlobalId: {
self->pushTask(SubType::doVisitGetGlobal, currp);
break;
}
case Expression::Id::SetGlobalId: {
self->pushTask(SubType::doVisitSetGlobal, currp);
self->pushTask(SubType::scan, &curr->cast<SetGlobal>()->value);
break;
}
case Expression::Id::LoadId: {
self->pushTask(SubType::doVisitLoad, currp);
self->pushTask(SubType::scan, &curr->cast<Load>()->ptr);
break;
}
case Expression::Id::StoreId: {
self->pushTask(SubType::doVisitStore, currp);
self->pushTask(SubType::scan, &curr->cast<Store>()->value);
self->pushTask(SubType::scan, &curr->cast<Store>()->ptr);
break;
}
case Expression::Id::AtomicRMWId: {
self->pushTask(SubType::doVisitAtomicRMW, currp);
self->pushTask(SubType::scan, &curr->cast<AtomicRMW>()->value);
self->pushTask(SubType::scan, &curr->cast<AtomicRMW>()->ptr);
break;
}
case Expression::Id::AtomicCmpxchgId: {
self->pushTask(SubType::doVisitAtomicCmpxchg, currp);
self->pushTask(SubType::scan, &curr->cast<AtomicCmpxchg>()->replacement);
self->pushTask(SubType::scan, &curr->cast<AtomicCmpxchg>()->expected);
self->pushTask(SubType::scan, &curr->cast<AtomicCmpxchg>()->ptr);
break;
}
case Expression::Id::AtomicWaitId: {
self->pushTask(SubType::doVisitAtomicWait, currp);
self->pushTask(SubType::scan, &curr->cast<AtomicWait>()->timeout);
self->pushTask(SubType::scan, &curr->cast<AtomicWait>()->expected);
self->pushTask(SubType::scan, &curr->cast<AtomicWait>()->ptr);
break;
}
case Expression::Id::AtomicWakeId: {
self->pushTask(SubType::doVisitAtomicWake, currp);
self->pushTask(SubType::scan, &curr->cast<AtomicWake>()->wakeCount);
self->pushTask(SubType::scan, &curr->cast<AtomicWake>()->ptr);
break;
}
case Expression::Id::ConstId: {
self->pushTask(SubType::doVisitConst, currp);
break;
}
case Expression::Id::UnaryId: {
self->pushTask(SubType::doVisitUnary, currp);
self->pushTask(SubType::scan, &curr->cast<Unary>()->value);
break;
}
case Expression::Id::BinaryId: {
self->pushTask(SubType::doVisitBinary, currp);
self->pushTask(SubType::scan, &curr->cast<Binary>()->right);
self->pushTask(SubType::scan, &curr->cast<Binary>()->left);
break;
}
case Expression::Id::SelectId: {
self->pushTask(SubType::doVisitSelect, currp);
self->pushTask(SubType::scan, &curr->cast<Select>()->condition);
self->pushTask(SubType::scan, &curr->cast<Select>()->ifFalse);
self->pushTask(SubType::scan, &curr->cast<Select>()->ifTrue);
break;
}
case Expression::Id::DropId: {
self->pushTask(SubType::doVisitDrop, currp);
self->pushTask(SubType::scan, &curr->cast<Drop>()->value);
break;
}
case Expression::Id::ReturnId: {
self->pushTask(SubType::doVisitReturn, currp);
self->maybePushTask(SubType::scan, &curr->cast<Return>()->value);
break;
}
case Expression::Id::HostId: {
self->pushTask(SubType::doVisitHost, currp);
auto& list = curr->cast<Host>()->operands;
for (int i = int(list.size()) - 1; i >= 0; i--) {
self->pushTask(SubType::scan, &list[i]);
}
break;
}
case Expression::Id::NopId: {
self->pushTask(SubType::doVisitNop, currp);
break;
}
case Expression::Id::UnreachableId: {
self->pushTask(SubType::doVisitUnreachable, currp);
break;
}
default: WASM_UNREACHABLE();
}
}
};
// Traversal with a control-flow stack.
template<typename SubType, typename VisitorType = Visitor<SubType>>
struct ControlFlowWalker : public PostWalker<SubType, VisitorType> {
ControlFlowWalker() {}
std::vector<Expression*> controlFlowStack; // contains blocks, loops, and ifs
// Uses the control flow stack to find the target of a break to a name
Expression* findBreakTarget(Name name) {
assert(!controlFlowStack.empty());
Index i = controlFlowStack.size() - 1;
while (1) {
auto* curr = controlFlowStack[i];
if (Block* block = curr->template dynCast<Block>()) {
if (name == block->name) return curr;
} else if (Loop* loop = curr->template dynCast<Loop>()) {
if (name == loop->name) return curr;
} else {
// an if, ignorable
assert(curr->template is<If>());
}
if (i == 0) return nullptr;
i--;
}
}
static void doPreVisitControlFlow(SubType* self, Expression** currp) {
self->controlFlowStack.push_back(*currp);
}
static void doPostVisitControlFlow(SubType* self, Expression** currp) {
// note that we might be popping something else, as we may have been replaced
self->controlFlowStack.pop_back();
}
static void scan(SubType* self, Expression** currp) {
auto* curr = *currp;
switch (curr->_id) {
case Expression::Id::BlockId:
case Expression::Id::IfId:
case Expression::Id::LoopId: {
self->pushTask(SubType::doPostVisitControlFlow, currp);
break;
}
default: {}
}
PostWalker<SubType, VisitorType>::scan(self, currp);
switch (curr->_id) {
case Expression::Id::BlockId:
case Expression::Id::IfId:
case Expression::Id::LoopId: {
self->pushTask(SubType::doPreVisitControlFlow, currp);
break;
}
default: {}
}
}
};
// Traversal with an expression stack.
template<typename SubType, typename VisitorType = Visitor<SubType>>
struct ExpressionStackWalker : public PostWalker<SubType, VisitorType> {
ExpressionStackWalker() {}
std::vector<Expression*> expressionStack;
// Uses the control flow stack to find the target of a break to a name
Expression* findBreakTarget(Name name) {
assert(!expressionStack.empty());
Index i = expressionStack.size() - 1;
while (1) {
auto* curr = expressionStack[i];
if (Block* block = curr->template dynCast<Block>()) {
if (name == block->name) return curr;
} else if (Loop* loop = curr->template dynCast<Loop>()) {
if (name == loop->name) return curr;
} else {
WASM_UNREACHABLE();
}
if (i == 0) return nullptr;
i--;
}
}
Expression* getParent() {
if (expressionStack.size() == 1) return nullptr;
assert(expressionStack.size() >= 2);
return expressionStack[expressionStack.size() - 2];
}
static void doPreVisit(SubType* self, Expression** currp) {
self->expressionStack.push_back(*currp);
}
static void doPostVisit(SubType* self, Expression** currp) {
self->expressionStack.pop_back();
}
static void scan(SubType* self, Expression** currp) {
self->pushTask(SubType::doPostVisit, currp);
PostWalker<SubType, VisitorType>::scan(self, currp);
self->pushTask(SubType::doPreVisit, currp);
}
Expression* replaceCurrent(Expression* expression) {
PostWalker<SubType, VisitorType>::replaceCurrent(expression);
// also update the stack
expressionStack.back() = expression;
return expression;
}
};
// Traversal in the order of execution. This is quick and simple, but
// does not provide the same comprehensive information that a full
// conversion to basic blocks would. What it does give is a quick
// way to view straightline execution traces, i.e., that have no
// branching. This can let optimizations get most of what they
// want without the cost of creating another AST.
//
// When execution is no longer linear, this notifies via a call
// to noteNonLinear().
template<typename SubType, typename VisitorType = Visitor<SubType>>
struct LinearExecutionWalker : public PostWalker<SubType, VisitorType> {
LinearExecutionWalker() {}
// subclasses should implement this
void noteNonLinear(Expression* curr) { abort(); }
static void doNoteNonLinear(SubType* self, Expression** currp) {
self->noteNonLinear(*currp);
}
static void scan(SubType* self, Expression** currp) {
Expression* curr = *currp;
switch (curr->_id) {
case Expression::Id::InvalidId: abort();
case Expression::Id::BlockId: {
self->pushTask(SubType::doVisitBlock, currp);
if (curr->cast<Block>()->name.is()) {
self->pushTask(SubType::doNoteNonLinear, currp);
}
auto& list = curr->cast<Block>()->list;
for (int i = int(list.size()) - 1; i >= 0; i--) {
self->pushTask(SubType::scan, &list[i]);
}
break;
}
case Expression::Id::IfId: {
self->pushTask(SubType::doVisitIf, currp);
self->pushTask(SubType::doNoteNonLinear, currp);
self->maybePushTask(SubType::scan, &curr->cast<If>()->ifFalse);
self->pushTask(SubType::doNoteNonLinear, currp);
self->pushTask(SubType::scan, &curr->cast<If>()->ifTrue);
self->pushTask(SubType::doNoteNonLinear, currp);
self->pushTask(SubType::scan, &curr->cast<If>()->condition);
break;
}
case Expression::Id::LoopId: {
self->pushTask(SubType::doVisitLoop, currp);
self->pushTask(SubType::scan, &curr->cast<Loop>()->body);
self->pushTask(SubType::doNoteNonLinear, currp);
break;
}
case Expression::Id::BreakId: {
self->pushTask(SubType::doVisitBreak, currp);
self->pushTask(SubType::doNoteNonLinear, currp);
self->maybePushTask(SubType::scan, &curr->cast<Break>()->condition);
self->maybePushTask(SubType::scan, &curr->cast<Break>()->value);
break;
}
case Expression::Id::SwitchId: {
self->pushTask(SubType::doVisitSwitch, currp);
self->pushTask(SubType::doNoteNonLinear, currp);
self->maybePushTask(SubType::scan, &curr->cast<Switch>()->value);
self->pushTask(SubType::scan, &curr->cast<Switch>()->condition);
break;
}
case Expression::Id::ReturnId: {
self->pushTask(SubType::doVisitReturn, currp);
self->pushTask(SubType::doNoteNonLinear, currp);
self->maybePushTask(SubType::scan, &curr->cast<Return>()->value);
break;
}
case Expression::Id::UnreachableId: {
self->pushTask(SubType::doVisitUnreachable, currp);
self->pushTask(SubType::doNoteNonLinear, currp);
break;
}
default: {
// other node types do not have control flow, use regular post-order
PostWalker<SubType, VisitorType>::scan(self, currp);
}
}
}
};
} // namespace wasm
#endif // wasm_wasm_traversal_h