forked from bugra/kmeans
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdistance.go
110 lines (95 loc) · 3.32 KB
/
distance.go
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
package kmeans
/*
This module provides common distance functions for measuring distance
between observations.
Minkowski Distance is one the most inclusive among one as other distances are only
a specific case of Minkowski Distance(Chebyshev Distance is not straightforward, though).
when p=1 in MinkowskiDistance, it becomes ManhattanDistance,
when p=2 in MinkowskiDistance, it becomes EuclideanDIstance,
when p goes infinity, it becomes ChebyshevDistance.
Since the ManhattanDistance and EuclideanDistance are very frequently used, they are
implemented separately.
*/
import (
"math"
)
// Lp Norm of an array, given p >= 1
func LPNorm(vector []float64, p float64) (float64, error) {
distance := 0.
for _, jj := range vector {
distance += math.Pow(math.Abs(jj), p)
}
return math.Pow(distance, 1/p), nil
}
// 1-norm distance (l_1 distance)
func ManhattanDistance(firstVector, secondVector []float64) (float64, error) {
distance := 0.
for ii := range firstVector {
distance += math.Abs(firstVector[ii] - secondVector[ii])
}
return distance, nil
}
// 2-norm distance (l_2 distance)
func EuclideanDistance(firstVector, secondVector []float64) (float64, error) {
distance := 0.
for ii := range firstVector {
distance += (firstVector[ii] - secondVector[ii]) * (firstVector[ii] - secondVector[ii])
}
return math.Sqrt(distance), nil
}
// Higher weight for the points that are far apart
// Not a real metric as it does not obey triangle inequality
func SquaredEuclideanDistance(firstVector, secondVector []float64) (float64, error) {
distance, err := EuclideanDistance(firstVector, secondVector)
return distance * distance, err
}
// p-norm distance (l_p distance)
func MinkowskiDistance(firstVector, secondVector []float64, p float64) (float64, error) {
distance := 0.
for ii := range firstVector {
distance += math.Pow(math.Abs(firstVector[ii]-secondVector[ii]), p)
}
return math.Pow(distance, 1/p), nil
}
// p-norm distance with weights (weighted l_p distance)
func WeightedMinkowskiDistance(firstVector, secondVector, weightVector []float64, p float64) (float64, error) {
distance := 0.
for ii := range firstVector {
distance += weightVector[ii] * math.Pow(math.Abs(firstVector[ii]-secondVector[ii]), p)
}
return math.Pow(distance, 1/p), nil
}
// infinity norm distance (l_inf distance)
func ChebyshevDistance(firstVector, secondVector []float64) (float64, error) {
distance := 0.
for ii := range firstVector {
if math.Abs(firstVector[ii]-secondVector[ii]) >= distance {
distance = math.Abs(firstVector[ii] - secondVector[ii])
}
}
return distance, nil
}
func HammingDistance(firstVector, secondVector []float64) (float64, error) {
distance := 0.
for ii := range firstVector {
if firstVector[ii] != secondVector[ii] {
distance++
}
}
return distance, nil
}
func BrayCurtisDistance(firstVector, secondVector []float64) (float64, error) {
numerator, denominator := 0., 0.
for ii := range firstVector {
numerator += math.Abs(firstVector[ii] - secondVector[ii])
denominator += math.Abs(firstVector[ii] + secondVector[ii])
}
return numerator / denominator, nil
}
func CanberraDistance(firstVector, secondVector []float64) (float64, error) {
distance := 0.
for ii := range firstVector {
distance += (math.Abs(firstVector[ii]-secondVector[ii]) / (math.Abs(firstVector[ii]) + math.Abs(secondVector[ii])))
}
return distance, nil
}