-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathprims.go
128 lines (114 loc) · 3.1 KB
/
prims.go
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
// Package primitive is a support library for generic Go primitives.
//
// GooseLang provides models for all of these operations.
package primitive
import (
"encoding/binary"
"fmt"
"math/rand"
"os"
"sync"
"time"
)
// UInt64Get converts the first 8 bytes of p (in little-endian order) to a
// uint64.
//
// Requires p be at least 8 bytes long.
func UInt64Get(p []byte) uint64 {
return binary.LittleEndian.Uint64(p)
}
// UInt32Get converts the first 4 bytes of p (in little endian order) to a
// uint32.
//
// Requires p be at least 4 bytes long.
func UInt32Get(p []byte) uint32 {
return binary.LittleEndian.Uint32(p)
}
// UInt64Put stores n to the first 8 bytes of p in little-endian order.
//
// Requires p to be at least 8 bytes long.
func UInt64Put(p []byte, n uint64) {
binary.LittleEndian.PutUint64(p, n)
}
// UInt32Put stores n to the first 4 bytes of p in little-endian order.
//
// Requires p to be at least 4 bytes long.
func UInt32Put(p []byte, n uint32) {
binary.LittleEndian.PutUint32(p, n)
}
// RandomUint64 returns a random uint64 using the global seed.
func RandomUint64() uint64 {
return rand.Uint64()
}
// UInt64ToString formats a number as a string.
//
// Assumed to be pure and injective in the Coq model.
func UInt64ToString(x uint64) string {
return fmt.Sprintf("%d", x)
}
// Linearize does nothing.
//
// Translates to an atomic step that supports opening invariants conveniently for
// the sake of executing a simulation fancy update at the linearization point of
// a procedure.
func Linearize() {}
// Assume lets the proof assume that `c` is true.
//
// In Go, if the assumption is violated this function will panic, whereas in the
// GooseLang model it will loop infinitely.
func Assume(c bool) {
if !c {
panic("Assume condition violated")
}
}
// Assert induces a proof obligation that `c` is true.
//
// The Go implementation will panic (quit the process in a controlled manner) if
// `c` is not true. In GooseLang, it will make the machine stuck, i.e., cause UB.
//
// Using `panic()` directly is preferred (which is also modeled as the machine
// getting stuck), unless the extra control flow is unsupported.
func Assert(c bool) {
if !c {
panic("Assert condition violated")
}
}
// Exit terminates the program with the given exit code.
//
// Modeled as an infinite loop since no more steps will be taken.
func Exit(n uint64) {
os.Exit(int(n))
}
// WaitTimeout is like cond.Wait(), but waits for a maximum time of timeoutMs
// milliseconds.
//
// Not provided by sync.Cond, so we have to (inefficiently) implement this
// ourselves.
func WaitTimeout(cond *sync.Cond, timeoutMs uint64) {
done := make(chan struct{})
go func() {
cond.Wait()
cond.L.Unlock()
close(done)
}()
select {
case <-time.After(time.Duration(timeoutMs) * time.Millisecond):
// timed out
cond.L.Lock()
return
case <-done:
// Wait returned
cond.L.Lock()
return
}
}
// TimeNow returns the current time in nanoseconds.
func TimeNow() uint64 {
return uint64(time.Now().UnixNano())
}
// Sleep waits for ns nanoseconds.
//
// Modeled as a no-op.
func Sleep(ns uint64) {
time.Sleep(time.Duration(ns) * time.Nanosecond)
}