-
Notifications
You must be signed in to change notification settings - Fork 26
/
Copy pathget-coverage.py
244 lines (196 loc) · 7.76 KB
/
get-coverage.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
"""
2018 Gregory Way
7.analyze-coverage/get-coverage.py
For a given dataset and gene set compendia extract coverage metrics. The coverage
metrics include the propotion of genesets falling as the top ranked feature in
independent and ensemble models. We also extract the z score for these top features.
Usage:
python get-coverage.py
Output:
Three dataframes storing gene set coverage and z score values for the given input
dataset and geneset. The three dataframes include:
1. Individual models
2. Ensemble models - aggregate seeds within algorithms and z dimensions
3. All model - aggregate all seeds across algorithms but within z dimension
"""
import os
import sys
import argparse
import pandas as pd
sys.path.append("../scripts")
from latent import parse_gmt
parser = argparse.ArgumentParser()
parser.add_argument(
"-d",
"--dataset",
choices=["TCGA", "GTEX", "TARGET"],
help="the dataset used to explore results",
)
parser.add_argument("-g", "--geneset", help="the geneset to evaluate coverage")
args = parser.parse_args()
# Load command arguments
dataset = args.dataset.lower()
geneset = args.geneset.lower()
def get_minmax_geneset(row, minmax="min"):
"""
Determine the highest z score and corresponding geneset. Used in pandas apply().
Arguments:
row - a pandas dataframe row - used in apply
minmax - a string (either "min" or "max") to find highest or lowest feature
Output:
A pandas series of the top z score and geneset combination
"""
if minmax == "min":
idx = row.z_score.idxmin()
else:
idx = row.z_score.idxmax()
z_score = row.z_score[idx]
geneset = row.variable[idx]
return pd.Series([z_score, geneset], index=["top_z_score", "geneset"])
def assign_attributes(df, dataset, z_dim, geneset):
"""
Create new columns for the given input data frame - will be used for plotting
Arguments:
df - a pandas dataframe storing individual, ensemble, or all results
dataset - a string indicating the dataset of interest
z_dim - a string of the internal dimensionality of the given model
geneset - a string indicating the geneset of interest
Output:
The same dataset with additional columns to be used for plotting downstream
"""
df_copy = df.copy()
return df_copy.assign(dataset=dataset, z_dim=z_dim, geneset_name=geneset)
# Load gmt file
base_gmt_dir = os.path.join("..", "3.build-hetnets", "data")
gmt_file_dict = {
"gpc1": "c1.all.v6.1.entrez.gmt",
"gpc2cpg": "c2.cgp.v6.1.entrez.gmt",
"gpc2cpreactome": "c2.cp.reactome.v6.1.entrez.gmt",
"gpc3mir": "c3.mir.v6.1.entrez.gmt",
"gpc3tft": "c3.tft.v6.1.entrez.gmt",
"gpc4cgn": "c4.cgn.v6.1.entrez.gmt",
"gpc4cm": "c4.cm.v6.1.entrez.gmt",
"gpc5bp": "c5.bp.v6.1.entrez.gmt",
"gpc5cc": "c5.cc.v6.1.entrez.gmt",
"gpc5mf": "c5.mf.v6.1.entrez.gmt",
"gpc6": "c6.all.v6.1.entrez.gmt",
"gpc7": "c7.all.v6.1.entrez.gmt",
"gph": "h.all.v6.1.entrez.gmt",
"gpxcell": "xcell_all_entrez.gmt",
}
gmt_file = os.path.join(base_gmt_dir, gmt_file_dict[geneset])
gmt_data = parse_gmt(gene_sets=[gmt_file])
n_gmt = len(gmt_data)
# Build common groupby lists
individual_features = ["algorithm", "feature", "seed", "model_type"]
individual_models = ["algorithm", "seed", "model_type"]
ensemble_models = ["algorithm", "model_type"]
all_models = ["model_type"]
# What is the directory to search for results in
base_dir = os.path.join(
"..", "6.analyze-weights", "results", dataset, geneset, "signal"
)
model_results_list = []
ensemble_results_list = []
all_results_list = []
top_list = []
for file in os.listdir(base_dir):
# Extract z dimension
z_dim = file.split("_")[2]
# Build full file path
file = os.path.join(base_dir, file)
print("Now processing... {}".format(file))
# Read data
df = pd.read_table(file)
# Select the ceiling and floor of each feature
# within each model (model_type, algorithm, and seed)
min_df = (
df.groupby(individual_features)
.apply(lambda x: get_minmax_geneset(x, minmax="min"))
.reset_index()
)
max_df = (
df.groupby(individual_features)
.apply(lambda x: get_minmax_geneset(x, minmax="max"))
.reset_index()
)
top_df = pd.concat([min_df, max_df])
top_df = top_df.assign(abs_top_z_score=top_df.top_z_score.abs())
# TEST 1 - Coverage
# Get coverage per individual model (algorithm, seed, model_type)
model_coverage_df = (
(top_df.groupby(individual_models).geneset.nunique() / n_gmt)
.reset_index()
.rename({"geneset": "geneset_coverage"}, axis="columns")
)
# Also get coverage per ensemble model (algorithm, model_type)
ensemble_coverage_df = (
(top_df.groupby(ensemble_models).geneset.nunique() / n_gmt)
.reset_index()
.rename({"geneset": "geneset_coverage"}, axis="columns")
)
# And, lastly, get coverage for ALL models
all_coverage_df = (
(top_df.groupby(all_models).geneset.nunique() / n_gmt)
.reset_index()
.rename({"geneset": "geneset_coverage"}, axis="columns")
)
# TEST 2 - Strength of signal (by z-score)
model_zscore_summary_df = (
top_df.groupby(individual_models).apply(
lambda x: x.abs_top_z_score.sort_values(ascending=False).head(1)
)
).reset_index()
# Also get coverage per ensemble model (algorithm, model_type)
ensemble_zscore_summary_df = (
top_df.groupby(ensemble_models).apply(
lambda x: x.abs_top_z_score.sort_values(ascending=False).head(1)
)
).reset_index()
# And, lastly, get coverage for ALL models
all_zscore_summary_df = top_df.groupby(all_models).apply(
lambda x: x.abs_top_z_score.sort_values(ascending=False).head(1)
)
all_zscore_summary_df.columns = ["abs_top_z_score"]
# Compile all results together
model_results_df = model_coverage_df.merge(
model_zscore_summary_df, on=individual_models
)
ensemble_results_df = ensemble_coverage_df.merge(
ensemble_zscore_summary_df, on=ensemble_models
)
all_results_df = all_coverage_df.merge(all_zscore_summary_df, on=all_models)
# Track additional metrics
model_results_df = assign_attributes(
df=model_results_df, dataset=dataset, z_dim=z_dim, geneset=geneset
)
ensemble_results_df = assign_attributes(
df=ensemble_results_df, dataset=dataset, z_dim=z_dim, geneset=geneset
)
all_results_df = assign_attributes(
df=all_results_df, dataset=dataset, z_dim=z_dim, geneset=geneset
)
top_df = assign_attributes(df=top_df, dataset=dataset, z_dim=z_dim, geneset=geneset)
# Save results
model_results_list.append(model_results_df)
ensemble_results_list.append(ensemble_results_df)
all_results_list.append(all_results_df)
top_list.append(top_df)
# Compile results
complete_model_results_df = pd.concat(model_results_list).reset_index(drop=True)
complete_ensemble_results_df = pd.concat(ensemble_results_list).reset_index(drop=True)
complete_all_results_df = pd.concat(all_results_list).reset_index(drop=True)
complete_top_results_df = pd.concat(top_list).reset_index(drop=True)
# Save results to file
file = "model_results_{}_{}.tsv".format(dataset, geneset)
file = os.path.join("results", file)
complete_model_results_df.to_csv(file, sep="\t", index=False)
file = "ensemble_results_{}_{}.tsv".format(dataset, geneset)
file = os.path.join("results", file)
complete_ensemble_results_df.to_csv(file, sep="\t", index=False)
file = "all_results_{}_{}.tsv".format(dataset, geneset)
file = os.path.join("results", file)
complete_all_results_df.to_csv(file, sep="\t", index=False)
file = "top_results_{}_{}.tsv.gz".format(dataset, geneset)
file = os.path.join("results", file)
complete_top_results_df.to_csv(file, sep="\t", index=False, compression="gzip")