forked from google-research/albert
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathrun_classifier.py
559 lines (473 loc) · 21.4 KB
/
run_classifier.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
# coding=utf-8
# Copyright 2018 The Google AI Team Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""BERT finetuning on classification tasks."""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import math
import os
import time
from albert import classifier_utils
from albert import fine_tuning_utils
from albert import modeling
import tensorflow.compat.v1 as tf
from tensorflow.compat.v1 import estimator as tf_estimator
from tensorflow.contrib import cluster_resolver as contrib_cluster_resolver
from tensorflow.contrib import tpu as contrib_tpu
flags = tf.flags
FLAGS = flags.FLAGS
## Required parameters
flags.DEFINE_string(
"data_dir", None,
"The input data dir. Should contain the .tsv files (or other data files) "
"for the task.")
flags.DEFINE_string(
"albert_config_file", None,
"The config json file corresponding to the pre-trained ALBERT model. "
"This specifies the model architecture.")
flags.DEFINE_string("task_name", None, "The name of the task to train.")
flags.DEFINE_string(
"vocab_file", None,
"The vocabulary file that the ALBERT model was trained on.")
flags.DEFINE_string("spm_model_file", None,
"The model file for sentence piece tokenization.")
flags.DEFINE_string(
"output_dir", None,
"The output directory where the model checkpoints will be written.")
flags.DEFINE_string("cached_dir", None,
"Path to cached training and dev tfrecord file. "
"The file will be generated if not exist.")
## Other parameters
flags.DEFINE_string(
"init_checkpoint", None,
"Initial checkpoint (usually from a pre-trained BERT model).")
flags.DEFINE_string(
"albert_hub_module_handle", None,
"If set, the ALBERT hub module to use.")
flags.DEFINE_bool(
"do_lower_case", True,
"Whether to lower case the input text. Should be True for uncased "
"models and False for cased models.")
flags.DEFINE_integer(
"max_seq_length", 512,
"The maximum total input sequence length after WordPiece tokenization. "
"Sequences longer than this will be truncated, and sequences shorter "
"than this will be padded.")
flags.DEFINE_bool("do_train", False, "Whether to run training.")
flags.DEFINE_bool("do_eval", False, "Whether to run eval on the dev set.")
flags.DEFINE_bool(
"do_predict", False,
"Whether to run the model in inference mode on the test set.")
flags.DEFINE_integer("train_batch_size", 32, "Total batch size for training.")
flags.DEFINE_integer("eval_batch_size", 8, "Total batch size for eval.")
flags.DEFINE_integer("predict_batch_size", 8, "Total batch size for predict.")
flags.DEFINE_float("learning_rate", 5e-5, "The initial learning rate for Adam.")
flags.DEFINE_integer("train_step", 1000,
"Total number of training steps to perform.")
flags.DEFINE_integer(
"warmup_step", 0,
"number of steps to perform linear learning rate warmup for.")
flags.DEFINE_integer("save_checkpoints_steps", 1000,
"How often to save the model checkpoint.")
flags.DEFINE_integer("keep_checkpoint_max", 5,
"How many checkpoints to keep.")
flags.DEFINE_integer("iterations_per_loop", 1000,
"How many steps to make in each estimator call.")
flags.DEFINE_bool("use_tpu", False, "Whether to use TPU or GPU/CPU.")
flags.DEFINE_string("optimizer", "adamw", "Optimizer to use")
tf.flags.DEFINE_string(
"tpu_name", None,
"The Cloud TPU to use for training. This should be either the name "
"used when creating the Cloud TPU, or a grpc://ip.address.of.tpu:8470 "
"url.")
tf.flags.DEFINE_string(
"tpu_zone", None,
"[Optional] GCE zone where the Cloud TPU is located in. If not "
"specified, we will attempt to automatically detect the GCE project from "
"metadata.")
tf.flags.DEFINE_string(
"gcp_project", None,
"[Optional] Project name for the Cloud TPU-enabled project. If not "
"specified, we will attempt to automatically detect the GCE project from "
"metadata.")
tf.flags.DEFINE_string("master", None, "[Optional] TensorFlow master URL.")
flags.DEFINE_integer(
"num_tpu_cores", 8,
"Only used if `use_tpu` is True. Total number of TPU cores to use.")
flags.DEFINE_string(
"export_dir", None,
"The directory where the exported SavedModel will be stored.")
flags.DEFINE_float(
"threshold_to_export", float("nan"),
"The threshold value that should be used with the exported classifier. "
"When specified, the threshold will be attached to the exported "
"SavedModel, and served along with the predictions. Please use the "
"saved model cli ("
"https://www.tensorflow.org/guide/saved_model#details_of_the_savedmodel_command_line_interface"
") to view the output signature of the threshold.")
def _serving_input_receiver_fn():
"""Creates an input function for serving."""
seq_len = FLAGS.max_seq_length
serialized_example = tf.placeholder(
dtype=tf.string, shape=[None], name="serialized_example")
features = {
"input_ids": tf.FixedLenFeature([seq_len], dtype=tf.int64),
"input_mask": tf.FixedLenFeature([seq_len], dtype=tf.int64),
"segment_ids": tf.FixedLenFeature([seq_len], dtype=tf.int64),
}
feature_map = tf.parse_example(serialized_example, features=features)
feature_map["is_real_example"] = tf.constant(1, dtype=tf.int32)
feature_map["label_ids"] = tf.constant(0, dtype=tf.int32)
# tf.Example only supports tf.int64, but the TPU only supports tf.int32.
# So cast all int64 to int32.
for name in feature_map.keys():
t = feature_map[name]
if t.dtype == tf.int64:
t = tf.to_int32(t)
feature_map[name] = t
return tf_estimator.export.ServingInputReceiver(
features=feature_map, receiver_tensors=serialized_example)
def _add_threshold_to_model_fn(model_fn, threshold):
"""Adds the classifier threshold to the given model_fn."""
def new_model_fn(features, labels, mode, params):
spec = model_fn(features, labels, mode, params)
threshold_tensor = tf.constant(threshold, dtype=tf.float32)
default_serving_export = spec.export_outputs[
tf.saved_model.signature_constants.DEFAULT_SERVING_SIGNATURE_DEF_KEY]
default_serving_export.outputs["threshold"] = threshold_tensor
return spec
return new_model_fn
def main(_):
tf.logging.set_verbosity(tf.logging.INFO)
processors = {
"cola": classifier_utils.ColaProcessor,
"mnli": classifier_utils.MnliProcessor,
"mismnli": classifier_utils.MisMnliProcessor,
"mrpc": classifier_utils.MrpcProcessor,
"rte": classifier_utils.RteProcessor,
"sst-2": classifier_utils.Sst2Processor,
"sts-b": classifier_utils.StsbProcessor,
"qqp": classifier_utils.QqpProcessor,
"qnli": classifier_utils.QnliProcessor,
"wnli": classifier_utils.WnliProcessor,
}
if not (FLAGS.do_train or FLAGS.do_eval or FLAGS.do_predict or
FLAGS.export_dir):
raise ValueError(
"At least one of `do_train`, `do_eval`, `do_predict' or `export_dir` "
"must be True.")
if not FLAGS.albert_config_file and not FLAGS.albert_hub_module_handle:
raise ValueError("At least one of `--albert_config_file` and "
"`--albert_hub_module_handle` must be set")
if FLAGS.albert_config_file:
albert_config = modeling.AlbertConfig.from_json_file(
FLAGS.albert_config_file)
if FLAGS.max_seq_length > albert_config.max_position_embeddings:
raise ValueError(
"Cannot use sequence length %d because the ALBERT model "
"was only trained up to sequence length %d" %
(FLAGS.max_seq_length, albert_config.max_position_embeddings))
else:
albert_config = None # Get the config from TF-Hub.
tf.gfile.MakeDirs(FLAGS.output_dir)
task_name = FLAGS.task_name.lower()
if task_name not in processors:
raise ValueError("Task not found: %s" % (task_name))
processor = processors[task_name](
use_spm=True if FLAGS.spm_model_file else False,
do_lower_case=FLAGS.do_lower_case)
label_list = processor.get_labels()
tokenizer = fine_tuning_utils.create_vocab(
vocab_file=FLAGS.vocab_file,
do_lower_case=FLAGS.do_lower_case,
spm_model_file=FLAGS.spm_model_file,
hub_module=FLAGS.albert_hub_module_handle)
tpu_cluster_resolver = None
if FLAGS.use_tpu and FLAGS.tpu_name:
tpu_cluster_resolver = contrib_cluster_resolver.TPUClusterResolver(
FLAGS.tpu_name, zone=FLAGS.tpu_zone, project=FLAGS.gcp_project)
is_per_host = contrib_tpu.InputPipelineConfig.PER_HOST_V2
if FLAGS.do_train:
iterations_per_loop = int(min(FLAGS.iterations_per_loop,
FLAGS.save_checkpoints_steps))
else:
iterations_per_loop = FLAGS.iterations_per_loop
run_config = contrib_tpu.RunConfig(
cluster=tpu_cluster_resolver,
master=FLAGS.master,
model_dir=FLAGS.output_dir,
save_checkpoints_steps=int(FLAGS.save_checkpoints_steps),
keep_checkpoint_max=0,
tpu_config=contrib_tpu.TPUConfig(
iterations_per_loop=iterations_per_loop,
num_shards=FLAGS.num_tpu_cores,
per_host_input_for_training=is_per_host))
train_examples = None
if FLAGS.do_train:
train_examples = processor.get_train_examples(FLAGS.data_dir)
model_fn = classifier_utils.model_fn_builder(
albert_config=albert_config,
num_labels=len(label_list),
init_checkpoint=FLAGS.init_checkpoint,
learning_rate=FLAGS.learning_rate,
num_train_steps=FLAGS.train_step,
num_warmup_steps=FLAGS.warmup_step,
use_tpu=FLAGS.use_tpu,
use_one_hot_embeddings=FLAGS.use_tpu,
task_name=task_name,
hub_module=FLAGS.albert_hub_module_handle,
optimizer=FLAGS.optimizer)
if not math.isnan(FLAGS.threshold_to_export):
model_fn = _add_threshold_to_model_fn(model_fn, FLAGS.threshold_to_export)
# If TPU is not available, this will fall back to normal Estimator on CPU
# or GPU.
estimator = contrib_tpu.TPUEstimator(
use_tpu=FLAGS.use_tpu,
model_fn=model_fn,
config=run_config,
train_batch_size=FLAGS.train_batch_size,
eval_batch_size=FLAGS.eval_batch_size,
predict_batch_size=FLAGS.predict_batch_size,
export_to_tpu=False) # http://yaqs/4707241341091840
if FLAGS.do_train:
cached_dir = FLAGS.cached_dir
if not cached_dir:
cached_dir = FLAGS.output_dir
train_file = os.path.join(cached_dir, task_name + "_train.tf_record")
if not tf.gfile.Exists(train_file):
classifier_utils.file_based_convert_examples_to_features(
train_examples, label_list, FLAGS.max_seq_length, tokenizer,
train_file, task_name)
tf.logging.info("***** Running training *****")
tf.logging.info(" Num examples = %d", len(train_examples))
tf.logging.info(" Batch size = %d", FLAGS.train_batch_size)
tf.logging.info(" Num steps = %d", FLAGS.train_step)
train_input_fn = classifier_utils.file_based_input_fn_builder(
input_file=train_file,
seq_length=FLAGS.max_seq_length,
is_training=True,
drop_remainder=True,
task_name=task_name,
use_tpu=FLAGS.use_tpu,
bsz=FLAGS.train_batch_size)
estimator.train(input_fn=train_input_fn, max_steps=FLAGS.train_step)
if FLAGS.do_eval:
eval_examples = processor.get_dev_examples(FLAGS.data_dir)
num_actual_eval_examples = len(eval_examples)
if FLAGS.use_tpu:
# TPU requires a fixed batch size for all batches, therefore the number
# of examples must be a multiple of the batch size, or else examples
# will get dropped. So we pad with fake examples which are ignored
# later on. These do NOT count towards the metric (all tf.metrics
# support a per-instance weight, and these get a weight of 0.0).
while len(eval_examples) % FLAGS.eval_batch_size != 0:
eval_examples.append(classifier_utils.PaddingInputExample())
cached_dir = FLAGS.cached_dir
if not cached_dir:
cached_dir = FLAGS.output_dir
eval_file = os.path.join(cached_dir, task_name + "_eval.tf_record")
if not tf.gfile.Exists(eval_file):
classifier_utils.file_based_convert_examples_to_features(
eval_examples, label_list, FLAGS.max_seq_length, tokenizer,
eval_file, task_name)
tf.logging.info("***** Running evaluation *****")
tf.logging.info(" Num examples = %d (%d actual, %d padding)",
len(eval_examples), num_actual_eval_examples,
len(eval_examples) - num_actual_eval_examples)
tf.logging.info(" Batch size = %d", FLAGS.eval_batch_size)
# This tells the estimator to run through the entire set.
eval_steps = None
# However, if running eval on the TPU, you will need to specify the
# number of steps.
if FLAGS.use_tpu:
assert len(eval_examples) % FLAGS.eval_batch_size == 0
eval_steps = int(len(eval_examples) // FLAGS.eval_batch_size)
eval_drop_remainder = True if FLAGS.use_tpu else False
eval_input_fn = classifier_utils.file_based_input_fn_builder(
input_file=eval_file,
seq_length=FLAGS.max_seq_length,
is_training=False,
drop_remainder=eval_drop_remainder,
task_name=task_name,
use_tpu=FLAGS.use_tpu,
bsz=FLAGS.eval_batch_size)
best_trial_info_file = os.path.join(FLAGS.output_dir, "best_trial.txt")
def _best_trial_info():
"""Returns information about which checkpoints have been evaled so far."""
if tf.gfile.Exists(best_trial_info_file):
with tf.gfile.GFile(best_trial_info_file, "r") as best_info:
global_step, best_metric_global_step, metric_value = (
best_info.read().split(":"))
global_step = int(global_step)
best_metric_global_step = int(best_metric_global_step)
metric_value = float(metric_value)
else:
metric_value = -1
best_metric_global_step = -1
global_step = -1
tf.logging.info(
"Best trial info: Step: %s, Best Value Step: %s, "
"Best Value: %s", global_step, best_metric_global_step, metric_value)
return global_step, best_metric_global_step, metric_value
def _remove_checkpoint(checkpoint_path):
for ext in ["meta", "data-00000-of-00001", "index"]:
src_ckpt = checkpoint_path + ".{}".format(ext)
tf.logging.info("removing {}".format(src_ckpt))
tf.gfile.Remove(src_ckpt)
def _find_valid_cands(curr_step):
filenames = tf.gfile.ListDirectory(FLAGS.output_dir)
candidates = []
for filename in filenames:
if filename.endswith(".index"):
ckpt_name = filename[:-6]
idx = ckpt_name.split("-")[-1]
if int(idx) > curr_step:
candidates.append(filename)
return candidates
output_eval_file = os.path.join(FLAGS.output_dir, "eval_results.txt")
if task_name == "sts-b":
key_name = "pearson"
elif task_name == "cola":
key_name = "matthew_corr"
else:
key_name = "eval_accuracy"
global_step, best_perf_global_step, best_perf = _best_trial_info()
writer = tf.gfile.GFile(output_eval_file, "w")
while global_step < FLAGS.train_step:
steps_and_files = {}
filenames = tf.gfile.ListDirectory(FLAGS.output_dir)
for filename in filenames:
if filename.endswith(".index"):
ckpt_name = filename[:-6]
cur_filename = os.path.join(FLAGS.output_dir, ckpt_name)
if cur_filename.split("-")[-1] == "best":
continue
gstep = int(cur_filename.split("-")[-1])
if gstep not in steps_and_files:
tf.logging.info("Add {} to eval list.".format(cur_filename))
steps_and_files[gstep] = cur_filename
tf.logging.info("found {} files.".format(len(steps_and_files)))
if not steps_and_files:
tf.logging.info("found 0 file, global step: {}. Sleeping."
.format(global_step))
time.sleep(60)
else:
for checkpoint in sorted(steps_and_files.items()):
step, checkpoint_path = checkpoint
if global_step >= step:
if (best_perf_global_step != step and
len(_find_valid_cands(step)) > 1):
_remove_checkpoint(checkpoint_path)
continue
result = estimator.evaluate(
input_fn=eval_input_fn,
steps=eval_steps,
checkpoint_path=checkpoint_path)
global_step = result["global_step"]
tf.logging.info("***** Eval results *****")
for key in sorted(result.keys()):
tf.logging.info(" %s = %s", key, str(result[key]))
writer.write("%s = %s\n" % (key, str(result[key])))
writer.write("best = {}\n".format(best_perf))
if result[key_name] > best_perf:
best_perf = result[key_name]
best_perf_global_step = global_step
elif len(_find_valid_cands(global_step)) > 1:
_remove_checkpoint(checkpoint_path)
writer.write("=" * 50 + "\n")
writer.flush()
with tf.gfile.GFile(best_trial_info_file, "w") as best_info:
best_info.write("{}:{}:{}".format(
global_step, best_perf_global_step, best_perf))
writer.close()
for ext in ["meta", "data-00000-of-00001", "index"]:
src_ckpt = "model.ckpt-{}.{}".format(best_perf_global_step, ext)
tgt_ckpt = "model.ckpt-best.{}".format(ext)
tf.logging.info("saving {} to {}".format(src_ckpt, tgt_ckpt))
tf.io.gfile.rename(
os.path.join(FLAGS.output_dir, src_ckpt),
os.path.join(FLAGS.output_dir, tgt_ckpt),
overwrite=True)
if FLAGS.do_predict:
predict_examples = processor.get_test_examples(FLAGS.data_dir)
num_actual_predict_examples = len(predict_examples)
if FLAGS.use_tpu:
# TPU requires a fixed batch size for all batches, therefore the number
# of examples must be a multiple of the batch size, or else examples
# will get dropped. So we pad with fake examples which are ignored
# later on.
while len(predict_examples) % FLAGS.predict_batch_size != 0:
predict_examples.append(classifier_utils.PaddingInputExample())
predict_file = os.path.join(FLAGS.output_dir, "predict.tf_record")
classifier_utils.file_based_convert_examples_to_features(
predict_examples, label_list,
FLAGS.max_seq_length, tokenizer,
predict_file, task_name)
tf.logging.info("***** Running prediction*****")
tf.logging.info(" Num examples = %d (%d actual, %d padding)",
len(predict_examples), num_actual_predict_examples,
len(predict_examples) - num_actual_predict_examples)
tf.logging.info(" Batch size = %d", FLAGS.predict_batch_size)
predict_drop_remainder = True if FLAGS.use_tpu else False
predict_input_fn = classifier_utils.file_based_input_fn_builder(
input_file=predict_file,
seq_length=FLAGS.max_seq_length,
is_training=False,
drop_remainder=predict_drop_remainder,
task_name=task_name,
use_tpu=FLAGS.use_tpu,
bsz=FLAGS.predict_batch_size)
checkpoint_path = os.path.join(FLAGS.output_dir, "model.ckpt-best")
result = estimator.predict(
input_fn=predict_input_fn,
checkpoint_path=checkpoint_path)
output_predict_file = os.path.join(FLAGS.output_dir, "test_results.tsv")
output_submit_file = os.path.join(FLAGS.output_dir, "submit_results.tsv")
with tf.gfile.GFile(output_predict_file, "w") as pred_writer,\
tf.gfile.GFile(output_submit_file, "w") as sub_writer:
sub_writer.write("index" + "\t" + "prediction\n")
num_written_lines = 0
tf.logging.info("***** Predict results *****")
for (i, (example, prediction)) in\
enumerate(zip(predict_examples, result)):
probabilities = prediction["probabilities"]
if i >= num_actual_predict_examples:
break
output_line = "\t".join(
str(class_probability)
for class_probability in probabilities) + "\n"
pred_writer.write(output_line)
if task_name != "sts-b":
actual_label = label_list[int(prediction["predictions"])]
else:
actual_label = str(prediction["predictions"])
sub_writer.write(example.guid + "\t" + actual_label + "\n")
num_written_lines += 1
assert num_written_lines == num_actual_predict_examples
if FLAGS.export_dir:
tf.gfile.MakeDirs(FLAGS.export_dir)
checkpoint_path = os.path.join(FLAGS.output_dir, "model.ckpt-best")
tf.logging.info("Starting to export model.")
subfolder = estimator.export_saved_model(
export_dir_base=FLAGS.export_dir,
serving_input_receiver_fn=_serving_input_receiver_fn,
checkpoint_path=checkpoint_path)
tf.logging.info("Model exported to %s.", subfolder)
if __name__ == "__main__":
flags.mark_flag_as_required("data_dir")
flags.mark_flag_as_required("task_name")
flags.mark_flag_as_required("spm_model_file")
flags.mark_flag_as_required("output_dir")
tf.app.run()