forked from tidyverse/ggplot2
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathscale-.r
138 lines (104 loc) · 3.41 KB
/
scale-.r
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
# Domain: raw, transformed, user (limits)
# Range: raw, transformed
Scale <- proto(TopLevel, expr={
.input <- ""
.output <- ""
common <- NULL
legend <- TRUE
limits <- NULL
doc <- TRUE
class <- function(.) "scale"
new <- function(., name="Unknown") {
.$proto(name=name)
}
clone <- function(.) {
as.proto(.$as.list(all.names=TRUE), parent=.)
}
trained <- function(.) {
!is.null(.$input_set())
}
find <- function(., output, only.documented = FALSE) {
scales <- Scales$find_all()
select <- sapply(scales, function(x) any(output %in% c(x$output(), get("common", x))))
if (only.documented) select <- select & sapply(scales, function(x) get("doc", x))
unique(scales[select])
}
# Input --------------------------------------------------------------------
breaks <- NULL
input <- function(.) .$.input
input_set <- function(.) {
nulldefault(.$limits, .$.domain)
}
# Return names of all aesthetics in df that should be operated on
# by this scale - this is currently used for x and y scales, which also
# need to operate of {x,y}{min,max,end}.
input_aesthetics <- function(., df) {
input <- .$input()
matches <- aes_to_scale(names(df)) == input
names(df)[matches]
}
# Output -------------------------------------------------------------------
output <- function(.) .$.output
output_breaks <- function(.) .$map(.$input_breaks())
output_expand <- function(.) {
expand_range(.$output_set(), .$.expand[1], .$.expand[2])
}
# Train scale from a data frame
train_df <- function(., df) {
# Don't train if limits have already been set
if (!is.null(.$limits)) return()
input <- .$input_aesthetics(df)
l_ply(input, function(var) .$train(df[[var]]))
}
# Map values from a data.frame. Returns data.frame
map_df <- function(., df) {
output <- .$input_aesthetics(df)
mapped <- llply(output, function(var) .$map(df[[var]]))
if (length(mapped) == 0) {
return(as.data.frame(matrix(nrow = nrow(df), ncol=0)))
}
output_df <- do.call("data.frame", mapped)
names(output_df) <- output
output_df
}
# Guides
# ---------------------------------------------
legend_desc <- function(.) {
if (identical(., Scale) || !.$legend) return()
breaks <- .$output_breaks()
labels <- .$labels()
if (is.null(breaks) || is.null(labels)) return()
df <- data.frame(breaks, stringsAsFactors = FALSE)
names(df) <- .$output()
df$label <- labels
list(
name = nulldefault(.$name, ""),
aesthetic = .$output(),
display = df
)
}
pprint <- function(., newline=TRUE) {
clist <- function(x) paste(x, collapse=",")
cat("scale_", .$objname, ": ", clist(.$input()), " -> ", clist(.$output()), sep="")
if (!is.null(.$input_set())) {
cat(" (", clist(.$input_set()), " -> ", clist(.$output_set()), ")", sep="")
}
if (newline) cat("\n")
}
html_returns <- function(.) {
ps(
"<h2>Returns</h2>\n",
"<p>This function returns a scale object.</p>"
)
}
my_names <- function(.) {
ps(.$class(), .$common, .$objname, sep="_", collapse=NULL)
}
my_full_name <- function(.) {
ps(.$class(), .$input(), .$objname, sep="_", collapse=NULL)
}
parameters <- function(.) {
params <- formals(get("new", .))
params[setdiff(names(params), c(".","variable"))]
}
})