forked from ethan-iai/LaVan-Pytorch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.py
209 lines (151 loc) · 6.81 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
import argparse
import os
import random
import numpy as np
import torch
import torch.nn.parallel
import torch.backends.cudnn as cudnn
import torch.utils.data
import torch.nn.functional as F
from torch.autograd import Variable
import torchvision.datasets as dset
import torchvision.transforms as transforms
import torchvision.utils as vutils
import torchvision.models as models
model_names = sorted(name for name in models.__dict__
if name.islower() and not name.startswith("__")
and callable(models.__dict__[name]))
from utils import ToRange255, ToSpaceBGR, \
init_patch_square, progress_bar, submatrix
parser = argparse.ArgumentParser()
parser.add_argument('--workers', type=int, help='number of data loading workers', default=2)
parser.add_argument('--epochs', type=int, default=20, help='number of epochs to train for')
parser.add_argument('--cuda', action='store_true', help='enables cuda')
parser.add_argument('--gpu', type=int, default=0)
parser.add_argument('--target', type=int, default=None, help='')
parser.add_argument('--n-classes', type=int, default=1000, help='')
parser.add_argument('--iter', type=int, default=500, help='Iterations to find adversarial example.')
parser.add_argument('--data', type=str, required=True, help='Input images diretory.')
# TODO: add help msg
parser.add_argument('--x_min', type=int, default=210, help='')
parser.add_argument('--x-max', type=int, default=260, help='')
parser.add_argument('--y-min', type=int, default=210, help='')
parser.add_argument('--y_max', type=int, default=260, help='')
parser.add_argument('--epsilon', type=float, default=5, help='')
parser.add_argument('--image-size', type=int, default=299, help='the height / width of the input image to network')
parser.add_argument('--plot-all', action='store_true', help='plot all successful adversarial images')
parser.add_argument('--netClassifier', default='inception_v3',
choices=model_names, help="The target classifier")
parser.add_argument('--outf', default='./logs', help='folder to output images and model checkpoints')
parser.add_argument('--manualSeed', type=int, default=1338, help='manual seed')
opt = parser.parse_args()
print(opt)
try:
os.makedirs(opt.outf)
except OSError:
pass
if opt.manualSeed is None:
opt.manualSeed = random.randint(1, 10000)
print("Random Seed: ", opt.manualSeed)
random.seed(opt.manualSeed)
np.random.seed(opt.manualSeed)
torch.manual_seed(opt.manualSeed)
if opt.cuda:
torch.cuda.manual_seed_all(opt.manualSeed)
torch.cuda.set_device(opt.gpu)
cudnn.benchmark = True
if torch.cuda.is_available() and not opt.cuda:
print("WARNING: You have a CUDA device, so you should probably run with --cuda")
target = opt.target
n_classes = opt.n_classes
patch_type = opt.patch_type
patch_size = opt.patch_size
image_size = opt.image_size
plot_all = opt.plot_all
eps = opt.epsilon
if opt.x_min > opt.x_max:
raise ValueError("x_min > x_max")
if opt.y_min > opt.y_max:
raise ValueError("y_min > y_max")
print("=> creating model ")
netClassifier = models.__dict__[opt.netClassifier](pretrained=True) # num_classes = 1000 for imagenet
# pretrainedmodels.__dict__[opt.netClassifier](num_classes=opt.n_classes, pretrained='imagenet')
if opt.cuda:
netClassifier.cuda()
print('==> Preparing data..')
normalize = transforms.Normalize(mean=netClassifier.mean,
std=netClassifier.std)
image_loader = torch.utils.data.DataLoader(
dset.ImageFolder(opt.data, transforms.Compose([
transforms.Scale(round(max(netClassifier.input_size)*1.050)),
transforms.CenterCrop(max(netClassifier.input_size)),
transforms.ToTensor(),
ToSpaceBGR(netClassifier.input_space=='BGR'),
ToRange255(max(netClassifier.input_range)==255),
normalize,
])),
batch_size=1, shuffle=False, num_workers=opt.workers, pin_memory=True)
min_in, max_in = netClassifier.input_range[0], netClassifier.input_range[1]
min_in, max_in = np.array([min_in, min_in, min_in]), np.array([max_in, max_in, max_in])
mean, std = np.array(netClassifier.mean), np.array(netClassifier.std)
min_out, max_out = np.min((min_in-mean)/std), np.max((max_in-mean)/std)
def main():
netClassifier.eval()
success = 0
total = 0
for batch_idx, (data, labels) in enumerate(image_loader):
if opt.cuda:
data = data.cuda()
labels = labels.cuda()
data, labels = Variable(data), Variable(labels)
if target is None:
targets = torch.randint_like(n_classes, labels)
else:
targets = target * torch.ones_like(labels)
prediction = netClassifier(data)
# only computer adversarial examples on examples that are originally classified correctly
if prediction.data.max(1)[1][0] != labels.data[0]:
continue
total += 1
data_shape = tuple(data.data.shape)
patch, mask = init_patch_square(data_shape, opt.x_min, opt.x_max, opt.y_min, opt.y_max)
adv_x, mask, patch = attack(data, patch, mask, labels, targets)
adv_label = netClassifier(adv_x).data.max(1)[1][0]
ori_label = labels.data[0]
if adv_label == target:
success += 1
if plot_all == 1:
# plot source image
vutils.save_image(data.data, "./%s/%d_%d_original.png" %(opt.outf, batch_idx, ori_label), normalize=True)
# plot adversarial image
vutils.save_image(adv_x.data, "./%s/%d_%d_adversarial.png" %(opt.outf, batch_idx, adv_label), normalize=True)
masked_patch = torch.mul(mask, patch)
patch = masked_patch.data.cpu().numpy()
new_patch = np.zeros_like(patch)
for i in range(new_patch.shape[0]):
for j in range(new_patch.shape[1]):
new_patch[i][j] = submatrix(patch[i][j])
patch = new_patch
# log to file
progress_bar(batch_idx, len(image_loader), "Train Patch Success: {:.3f}".format(success/total))
return patch
def attack(x, patch, mask, source, target):
netClassifier.eval()
adv_x = torch.mul((1-mask),x) + torch.mul(mask,patch)
src_one_hot = F.one_hot(source).cuda()
tar_one_hot = F.one_hot(target).cuda()
for _ in range(1, opt.iter + 1):
adv_x = Variable(adv_x.data, requires_grad=True)
adv_out = netClassifier(adv_out)
loss = F.cross_entropy(adv_out, tar_one_hot) -\
F.cross_entropy(adv_out, src_one_hot)
loss.backward()
adv_grad = adv_x.grad.clone()
adv_x.grad.data.zero_()
patch -= adv_grad * eps
adv_x = torch.mul((1-mask),x) + torch.mul(mask,patch)
adv_x = torch.clamp(adv_x, min_out, max_out)
return adv_x, mask, patch
if __name__ == '__main__':
print("===> start attack...")
main()