forked from mazefeng/ml
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcommon.py
executable file
·147 lines (112 loc) · 3.29 KB
/
common.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
# coding=utf-8
import sys
import numpy as np
'''
All regression/classification data are stored in the same format as LIBSVM.
Use read_sparse_data for loading sparse data
Use read_dense_data for loading dense data
When loading dense data, feature id must be integer.
'''
# sigmoid
sigmoid = lambda x : 1.0 / (1.0 + np.exp(-x))
def align(X0, X1):
'''
align X0 and X1 by column
'''
m0, n0 = X0.shape
m1, n1 = X1.shape
if n0 > n1:
c = np.matrix(np.zeros([m1, n0 - n1]))
X1 = np.column_stack([X1, c])
elif n1 > n0:
c = np.matrix(np.zeros([m0, n1 - n0]))
X0 = np.column_stack([X0, c])
return X0, X1
def trace():
'''
print the function and line number that throws an exception
'''
try:
raise Exception
except:
f = sys.exc_info()[2].tb_frame.f_back
print >> sys.stderr, 'function =', f.f_code.co_name, ', line =', f.f_lineno
def read_dense_data(fp_data):
X, Y = list(), list()
max_len = 0
for line in fp_data:
line_arr = line.strip().split()
Y.append(line_arr[0])
x = list()
for kv in line_arr[1 : ]:
k, v = kv.split(':')
k = int(k) - 1
v = float(v)
x.extend([0.0] * (k - len(x) + 1))
if len(x) > max_len:
max_len = len(x)
x[k] = v
X.append(x)
for x in X:
x.extend([0.0] * (max_len - len(x)))
return X, Y
def read_sparse_data(fp_data):
X, Y = list(), list()
for line in fp_data:
line_arr = line.strip().split()
Y.append(line_arr[0])
x = list()
for kv in line_arr[1 : ]:
k, v = kv.split(':')
x.append([k, float(v)])
X.append(x)
return X, Y
def read_sequence_data(fp_data):
X, S = list(), list()
for line in fp_data:
x_list = list()
s_list = list()
for kv in line.strip().split():
k,v = kv.split('/')
x_list.append(k)
s_list.append(v)
X.append(x_list)
S.append(s_list)
return X, S
def plot_sequence_data(x, s, w = 128):
x_out = list()
t_out = list()
s_out = list()
for p, q in zip(x, s):
L = max(len(p), len(q))
d = L - len(q)
m = d / 2
n = d - m
x_out.append(p + ' ' * (L - len(p)))
s_out.append('-' * m + q + '-' * n)
m = (L - 1) / 2
n = L - 1 - m
t_out.append(' ' * m + '|' + ' ' * n)
s_line = '-'.join(s_out)
t_line = ' '.join(t_out)
x_line = ' '.join(x_out)
if len(s_line) > w:
for I in range(len(s_line) / w + 1):
print >> sys.stderr, s_line[I * w : (I + 1) * w]
print >> sys.stderr, t_line[I * w : (I + 1) * w]
print >> sys.stderr, x_line[I * w : (I + 1) * w]
else:
print >> sys.stderr, s_line
print >> sys.stderr, t_line
print >> sys.stderr, x_line
def map_label(Y):
m = {k:v for v,k in enumerate(set(Y))}
Y_map = [0] * len(Y)
for i, k in enumerate(Y):
Y_map[i] = m[k]
return Y_map
if __name__ == '__main__':
from random import randint
X, S = read_sequence_data(open('data/pos_tagging.train'))
i = randint(0, len(X) - 1)
plot_sequence_data(X[i], S[i])