-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathgenerator.py
82 lines (70 loc) · 3.48 KB
/
generator.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
import torch.nn as nn
from attn import Multi_Attn
##############################
# Generator
##############################
class ResidualBlock(nn.Module):
def __init__(self, in_features):
super(ResidualBlock, self).__init__()
conv_block = [ nn.ReflectionPad2d(1),
nn.Conv2d(in_features, in_features, 3),
nn.InstanceNorm2d(in_features),
nn.ReLU(inplace=True),
nn.ReflectionPad2d(1),
nn.Conv2d(in_features, in_features, 3),
nn.InstanceNorm2d(in_features)]
self.conv_block = nn.Sequential(*conv_block)
def forward(self, x):
return x + self.conv_block(x)
class Generator(nn.Module):
def __init__(self, in_channels=5, out_channels=3, res_blocks=3):
super(Generator, self).__init__()
# Initial convolution block
self.layer1 = nn.Sequential(nn.ReflectionPad2d(3),
nn.Conv2d(in_channels, 64, 7),
nn.InstanceNorm2d(64),
nn.ReLU(inplace=True))
# Downsampling
in_features = 64
self.layer2 = nn.Sequential(nn.Conv2d(in_features, in_features * 2,
4, stride=2, padding=1),
nn.InstanceNorm2d(in_features * 2),
nn.ReLU(inplace=True))
in_features = 2 * in_features #128
self.layer3 = nn.Sequential(nn.Conv2d(in_features, in_features*2, 4, stride=2, padding=1),
nn.InstanceNorm2d(in_features*2),
nn.ReLU(inplace=True))
in_features = 2 * in_features #256
# Residual blocks
if res_blocks != 0:
res_layers = [ResidualBlock(in_features)]
for _ in range(1, res_blocks):
res_layers += [ResidualBlock(in_features)]
self.res_layers = nn.Sequential(*res_layers)
# Upsampling
self.ma_layer1 = Multi_Attn('up', in_features, 2, 8, 1)
self.ma_layer2 = Multi_Attn('up', in_features, 2, 8, 1)
self.ma_layer3 = Multi_Attn('up', in_features, 2, 8, 1)
out_features = in_features // 2 #128
self.layer4 = nn.Sequential(nn.ConvTranspose2d(in_features, out_features, 4, stride=2, padding=1),
nn.InstanceNorm2d(out_features),
nn.ReLU(inplace=True))
in_features = out_features #128
out_features = in_features // 2 #64
self.layer5 = nn.Sequential(nn.ConvTranspose2d(in_features, out_features, 4, stride=2, padding=1),
nn.InstanceNorm2d(out_features),
nn.ReLU(inplace=True))
self.layer6 = nn.Sequential(nn.ReflectionPad2d(3),
nn.Conv2d(out_features, out_channels, 7),
nn.Tanh())
def forward(self, x, y):
x = self.layer1(x); y = self.layer1(y)
x = self.layer2(x); y = self.layer2(y)
x = self.layer3(x); y = self.layer3(y)
x, y = self.ma_layer1(x, y)
x = self.res_layers(x)
x, _ = self.ma_layer2(x, x)
x = self.layer4(x)
x = self.layer5(x)
x = self.layer6(x)
return x