forked from pjreddie/darknet
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathim2col_kernels.cu
148 lines (127 loc) · 4.9 KB
/
im2col_kernels.cu
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
#include "cuda_runtime.h"
#include "curand.h"
#include "cublas_v2.h"
extern "C" {
#include "im2col.h"
#include "cuda.h"
}
// src: https://github.com/BVLC/caffe/blob/master/src/caffe/util/im2col.cu
// You may also want to read: https://github.com/BVLC/caffe/blob/master/LICENSE
__global__ void im2col_gpu_kernel(const int n, const float* data_im,
const int height, const int width, const int ksize,
const int pad,
const int stride,
const int height_col, const int width_col,
float *data_col) {
int index = blockIdx.x*blockDim.x+threadIdx.x;
for(; index < n; index += blockDim.x*gridDim.x){
int w_out = index % width_col;
int h_index = index / width_col;
int h_out = h_index % height_col;
int channel_in = h_index / height_col;
int channel_out = channel_in * ksize * ksize;
int h_in = h_out * stride - pad;
int w_in = w_out * stride - pad;
float* data_col_ptr = data_col;
data_col_ptr += (channel_out * height_col + h_out) * width_col + w_out;
const float* data_im_ptr = data_im;
data_im_ptr += (channel_in * height + h_in) * width + w_in;
for (int i = 0; i < ksize; ++i) {
for (int j = 0; j < ksize; ++j) {
int h = h_in + i;
int w = w_in + j;
*data_col_ptr = (h >= 0 && w >= 0 && h < height && w < width) ?
data_im_ptr[i * width + j] : 0;
data_col_ptr += height_col * width_col;
}
}
}
}
void im2col_ongpu(float *im,
int channels, int height, int width,
int ksize, int stride, int pad, float *data_col){
// We are going to launch channels * height_col * width_col kernels, each
// kernel responsible for copying a single-channel grid.
pad = pad ? ksize/2 : 0;
int height_col = (height + 2 * pad - ksize) / stride + 1;
int width_col = (width + 2 * pad - ksize) / stride + 1;
int num_kernels = channels * height_col * width_col;
im2col_gpu_kernel<<<(num_kernels+BLOCK-1)/BLOCK,
BLOCK>>>(
num_kernels, im, height, width, ksize, pad,
stride, height_col,
width_col, data_col);
}
/*
__global__ void im2col_pad_kernel(float *im,
int channels, int height, int width,
int ksize, int stride, float *data_col)
{
int c,h,w;
int height_col = 1 + (height-1) / stride;
int width_col = 1 + (width-1) / stride;
int channels_col = channels * ksize * ksize;
int pad = ksize/2;
int id = (blockIdx.x + blockIdx.y*gridDim.x) * blockDim.x + threadIdx.x;
int col_size = height_col*width_col*channels_col;
if (id >= col_size) return;
int col_index = id;
w = id % width_col;
id /= width_col;
h = id % height_col;
id /= height_col;
c = id % channels_col;
id /= channels_col;
int w_offset = c % ksize;
int h_offset = (c / ksize) % ksize;
int im_channel = c / ksize / ksize;
int im_row = h_offset + h * stride - pad;
int im_col = w_offset + w * stride - pad;
int im_index = im_col + width*(im_row + height*im_channel);
float val = (im_row < 0 || im_col < 0 || im_row >= height || im_col >= width) ? 0 : im[im_index];
data_col[col_index] = val;
}
__global__ void im2col_nopad_kernel(float *im,
int channels, int height, int width,
int ksize, int stride, float *data_col)
{
int c,h,w;
int height_col = (height - ksize) / stride + 1;
int width_col = (width - ksize) / stride + 1;
int channels_col = channels * ksize * ksize;
int id = (blockIdx.x + blockIdx.y*gridDim.x) * blockDim.x + threadIdx.x;
int col_size = height_col*width_col*channels_col;
if (id >= col_size) return;
int col_index = id;
w = id % width_col;
id /= width_col;
h = id % height_col;
id /= height_col;
c = id % channels_col;
id /= channels_col;
int w_offset = c % ksize;
int h_offset = (c / ksize) % ksize;
int im_channel = c / ksize / ksize;
int im_row = h_offset + h * stride;
int im_col = w_offset + w * stride;
int im_index = im_col + width*(im_row + height*im_channel);
float val = (im_row < 0 || im_col < 0 || im_row >= height || im_col >= width) ? 0 : im[im_index];
data_col[col_index] = val;
}
extern "C" void im2col_ongpu(float *im,
int channels, int height, int width,
int ksize, int stride, int pad, float *data_col)
{
int height_col = (height - ksize) / stride + 1;
int width_col = (width - ksize) / stride + 1;
int channels_col = channels * ksize * ksize;
if (pad){
height_col = 1 + (height-1) / stride;
width_col = 1 + (width-1) / stride;
}
size_t n = channels_col*height_col*width_col;
if(pad)im2col_pad_kernel<<<cuda_gridsize(n),BLOCK>>>(im, channels, height, width, ksize, stride, data_col);
else im2col_nopad_kernel<<<cuda_gridsize(n),BLOCK>>>(im, channels, height, width, ksize, stride, data_col);
check_error(cudaPeekAtLastError());
}
*/