-
Notifications
You must be signed in to change notification settings - Fork 295
/
Copy pathNFM.py
205 lines (162 loc) · 8.87 KB
/
NFM.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
#!/usr/bin/env python
#coding=utf-8
"""
TensorFlow Implementation of <<Neural Factorization Machines for Sparse Predictive Analytics>> with the fellowing features:
"""
import tensorflow as tf
#0 1:0.05 2:0.006633 3:0.05 4:0 5:0.021594 6:0.008 7:0.15 8:0.04 9:0.362 10:0.1 11:0.2 12:0 13:0.04 15:1 555:1 1078:1 17797:1 26190:1 26341:1 28570:1 35361:1 35613:1 35984:1 48424:1 51364:1 64053:1 65964:1 66206:1 71628:1 84088:1 84119:1 86889:1 88280:1 88283:1
def input_fn(filenames, batch_size=32, num_epochs=1, perform_shuffle=False):
print('Parsing', filenames)
def decode_libsvm(line):
columns = tf.string_split([line], ' ')
labels = tf.string_to_number(columns.values[0], out_type=tf.float32)
splits = tf.string_split(columns.values[1:], ':')
id_vals = tf.reshape(splits.values,splits.dense_shape)
feat_ids, feat_vals = tf.split(id_vals,num_or_size_splits=2,axis=1)
feat_ids = tf.string_to_number(feat_ids, out_type=tf.int32)
feat_vals = tf.string_to_number(feat_vals, out_type=tf.float32)
return {"feat_ids": feat_ids, "feat_vals": feat_vals}, labels
# Extract lines from input files using the Dataset API, can pass one filename or filename list
dataset = tf.data.TextLineDataset(filenames).map(decode_libsvm, num_parallel_calls=10).prefetch(1000)
# Randomizes input using a window of 256 elements (read into memory)
if perform_shuffle:
dataset = dataset.shuffle(buffer_size=256)
# epochs from blending together.
dataset = dataset.repeat(num_epochs)
dataset = dataset.batch(batch_size) # Batch size to use
iterator = dataset.make_one_shot_iterator()
batch_features, batch_labels = iterator.get_next()
return batch_features, batch_labels
def batch_norm_layer(x, train_phase, scope_bn):
bn_train = tf.contrib.layers.batch_norm(x, decay=0.9, center=True, scale=True, updates_collections=None, is_training=True, reuse=None, scope=scope_bn)
bn_infer = tf.contrib.layers.batch_norm(x, decay=0.9, center=True, scale=True, updates_collections=None, is_training=False, reuse=True, scope=scope_bn)
z = tf.cond(tf.cast(train_phase, tf.bool), lambda: bn_train, lambda: bn_infer)
return z
def model_fn(features, labels, mode, params):
"""Build Model function f(x) for Estimator."""
#------hyper parameters------
field_size = params['field_size']
feature_size = params['feature_size']
embedding_size = params['embedding_size']
l2_reg = params['l2_reg']
learning_rate = params['learning_rate']
dropout = params['dropout']
layers = params['layers']
#------build weights------
Global_Bias = tf.get_variable(name='bias', shape=[1], initializer=tf.constant_initializer(0.0))
Feat_Wgts = tf.get_variable(name='linear', shape=[feature_size], initializer=tf.glorot_normal_initializer())
Feat_Emb = tf.get_variable(name='emb', shape=[feature_size, embedding_size], initializer=tf.glorot_normal_initializer())
#------build feature------
feat_ids = features['feat_ids']
feat_ids = tf.reshape(feat_ids, shape=[-1, field_size])
feat_vals = features['feat_vals']
feat_vals = tf.reshape(feat_vals, shape=[-1, field_size])
#------build f(x)------
# f(x) = bias + sum(wx) + MLP(BI(embed_vec))
# FM部分
with tf.variable_scope("Linear-part"):
feat_wgts = tf.nn.embedding_lookup(Feat_Wgts, feat_ids) # None * F * 1
y_linear = tf.reduce_sum(tf.multiply(feat_wgts, feat_vals), 1) # None * 1
with tf.variable_scope("BiInter-part"):
embeddings = tf.nn.embedding_lookup(Feat_Emb, feat_ids) # None * F * k
feat_vals = tf.reshape(feat_vals, shape=[-1, field_size, 1]) # None * F * 1
embeddings = tf.multiply(embeddings, feat_vals) # vi * xi
sum_square_emb = tf.square(tf.reduce_sum(embeddings, 1))
square_sum_emb = tf.reduce_sum(tf.square(embeddings), 1)
deep_inputs = 0.5 * tf.subtract(sum_square_emb, square_sum_emb) # None * k
with tf.variable_scope("Deep-part"):
if mode == tf.estimator.ModeKeys.TRAIN:
train_phase = True
else:
train_phase = False
# BI的输出需要进行Batch Normalization
deep_inputs = batch_norm_layer(deep_inputs, train_phase=train_phase, scope_bn="bn_after_bi")
# BI的输出进行Dropout
if mode == tf.estimator.ModeKeys.TRAIN:
deep_inputs = tf.nn.dropout(deep_inputs, keep_prob=dropout[-1]) # dropout at bilinear interaction layer
for i in range(len(layers)):
deep_inputs = tf.contrib.layers.fully_connected(inputs=deep_inputs, num_outputs=layers[i], weights_regularizer=tf.contrib.layers.l2_regularizer(l2_reg), scope="mlp%d" % i)
# 注意是先进行Batch Norm,再进行Dropout
# Batch Normalization
deep_inputs = batch_norm_layer(deep_inputs, train_phase=train_phase, scope_bn="bn%d" % i)
# Dropout
if mode == tf.estimator.ModeKeys.TRAIN:
deep_inputs = tf.nn.dropout(deep_inputs, keep_prob=dropout[i])
# Output
y_deep = tf.contrib.layers.fully_connected(inputs=deep_inputs, num_outputs=1, activation_fn=tf.identity, weights_regularizer=tf.contrib.layers.l2_regularizer(l2_reg), scope="deep_out")
y_d = tf.reshape(y_deep, shape=[-1])
with tf.variable_scope("NFM-out"):
y_bias = Global_Bias * tf.ones_like(y_d, dtype=tf.float32)
y = y_bias + y_linear + y_d
pred = tf.sigmoid(y)
predictions = {"prob": pred}
export_outputs = {tf.saved_model.signature_constants.DEFAULT_SERVING_SIGNATURE_DEF_KEY: tf.estimator.export.PredictOutput(predictions)}
# Provide an estimator spec for `ModeKeys.PREDICT`
if mode == tf.estimator.ModeKeys.PREDICT:
return tf.estimator.EstimatorSpec(
mode=mode,
predictions=predictions,
export_outputs=export_outputs)
#------build loss------
loss = tf.reduce_mean(tf.nn.sigmoid_cross_entropy_with_logits(logits=y, labels=labels)) + l2_reg * tf.nn.l2_loss(Feat_Wgts) + l2_reg * tf.nn.l2_loss(Feat_Emb)
# Provide an estimator spec for `ModeKeys.EVAL`
eval_metric_ops = {
"auc": tf.metrics.auc(labels, pred)
}
if mode == tf.estimator.ModeKeys.EVAL:
return tf.estimator.EstimatorSpec(
mode=mode,
predictions=predictions,
loss=loss,
eval_metric_ops=eval_metric_ops)
#------build optimizer------
optimizer = tf.train.AdamOptimizer(learning_rate=learning_rate, beta1=0.9, beta2=0.999, epsilon=1e-8)
train_op = optimizer.minimize(loss, global_step=tf.train.get_global_step())
# Provide an estimator spec for `ModeKeys.TRAIN` modes
if mode == tf.estimator.ModeKeys.TRAIN:
return tf.estimator.EstimatorSpec(
mode=mode,
predictions=predictions,
loss=loss,
train_op=train_op)
#---------------------------------------------------------------------------------------------------------------
#------------------------------------------ Main Function ------------------------------------------------------
#---------------------------------------------------------------------------------------------------------------
# 日志级别
tf.logging.set_verbosity(tf.logging.INFO)
print("构建分类器......")
model_params = {
'field_size': 13 + 26,
'feature_size': 117581,
'embedding_size': 64,
'l2_reg': 0.0005,
'learning_rate': 0.001,
'layers':[400,400,400],
'dropout':[0.5, 0.5, 0.5] # 最后一个是BI输出的keep_prob
}
log_steps = 1000
config = tf.estimator.RunConfig().replace(
session_config=tf.ConfigProto(device_count={'GPU': 0, 'CPU': 10}),
log_step_count_steps=log_steps, save_summary_steps=log_steps)
classifier = tf.estimator.Estimator(model_fn=model_fn,model_dir='./model_save', params=model_params, config=config) # Path to where checkpoints etc are stored
train_file = '../EveryTestInOne/criteo/tr.libsvm'
test_file = '../EveryTestInOne/criteo/te.libsvm'
val_file = '../EveryTestInOne/criteo/va.libsvm'
print("训练......")
# 500 epochs = 500 * 120 records [60000] = (500 * 120) / 32 batches = 1875 batches
# 4 epochs = 4 * 30 records = (4 * 30) / 32 batches = 3.75 batches
classifier.train(input_fn=lambda: input_fn(train_file, 256, 1, True))
print("评估......")
evaluate_result = classifier.evaluate(input_fn=lambda: input_fn(val_file, 256, 1, False))
for key in evaluate_result:
tf.logging.info("{}, was: {}".format(key, evaluate_result[key]))
print("预测......")
predict_results = classifier.predict(input_fn=lambda: input_fn(test_file, 256, 1, False))
tf.logging.info("Prediction on test file")
for prediction in predict_results:
tf.logging.info("{}".format(prediction["prob"]))
break
# eval on Test
evaluate_result_test = classifier.evaluate(input_fn = lambda:input_fn(test_file, 256, 1, False))
for key in evaluate_result_test:
tf.logging.info("{0}, was: {1}".format(key, evaluate_result_test[key]))