-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathtrain.py
165 lines (142 loc) · 5.57 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
import os
from datasets import load_dataset
from transformers import (
AutoTokenizer,
DataCollatorForTokenClassification,
TrainingArguments,
Trainer,
AutoModelForTokenClassification,
)
from model import BertCrfForTokenClassification
import evaluate
import numpy as np
import argparse
from torch.optim import AdamW
def align_labels_with_tokens(labels, word_ids):
return [-100 if word_id is None else labels[word_id] for word_id in word_ids]
def tokenize_and_align_labels(examples, tokenizer):
tokenized_inputs = tokenizer(
examples["tokens"], truncation=True, is_split_into_words=True, max_length=512
)
all_labels = examples["ner_tags"]
new_labels = []
for i, labels in enumerate(all_labels):
word_ids = tokenized_inputs.word_ids(i)
new_labels.append(align_labels_with_tokens(labels, word_ids))
tokenized_inputs["labels"] = new_labels
return tokenized_inputs
def compute_metrics(eval_preds):
logits, labels = eval_preds
predictions = np.argmax(logits, axis=-1)
true_labels = [[label_names[l] for l in label if l != -100] for label in labels]
true_predictions = [
[label_names[p] for (p, l) in zip(prediction, label) if l != -100]
for prediction, label in zip(predictions, labels)
]
metric = evaluate.load("seqeval")
all_metrics = metric.compute(predictions=true_predictions, references=true_labels)
return {
"precision": all_metrics["overall_precision"],
"recall": all_metrics["overall_recall"],
"f1": all_metrics["overall_f1"],
"accuracy": all_metrics["overall_accuracy"],
}
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("--gpu_ids", type=str, default="0,1,2,3,4,5,6,7")
parser.add_argument(
"--check_point", type=str, default="hfl/chinese-roberta-wwm-ext-large"
)
parser.add_argument(
"--repo_name", type=str, default="RoBERTa-ext-large-chinese-finetuned-crf-ner"
)
parser.add_argument("--epochs", type=int, default=10)
parser.add_argument("--dry_run", action="store_true")
parser.add_argument("--push_to_hub", action="store_true")
parser.add_argument("--use_crf", action="store_true")
parser.add_argument("--crf_lr", type=float, default=2e-3)
parser.add_argument("--freeze_base_model", action="store_true")
parser.add_argument("--batch_size", type=int, default=32)
parser.add_argument("--lr", type=float, default=2e-5)
args = parser.parse_args()
os.environ["CUDA_DEVICE_ORDER"] = "PCI_BUS_ID"
os.environ["CUDA_VISIBLE_DEVICES"] = args.gpu_ids
os.environ["TRANSFORMERS_NO_ADVISORY_WARNINGS"] = "true"
dataset = load_dataset("gyr66/privacy_detection")
dataset = dataset["train"].train_test_split(train_size=0.8, seed=42)
dataset["validation"] = dataset.pop("test")
ner_feature = dataset["train"].features["ner_tags"]
label_names = ner_feature.feature.names
id2label = {i: label for i, label in enumerate(label_names)}
label2id = {v: k for k, v in id2label.items()}
check_point = args.check_point
tokenizer = AutoTokenizer.from_pretrained(check_point, ignore_mismatched_sizes=True)
optimizer = None
if args.use_crf:
model = BertCrfForTokenClassification.from_pretrained(
check_point,
num_labels=len(id2label),
)
crf_parameters = [p for n, p in model.named_parameters() if "crf" in n]
remaining_parameters = [
p for n, p in model.named_parameters() if "crf" not in n
]
optimizer = AdamW(
[
{"params": remaining_parameters, "lr": args.lr},
{"params": crf_parameters, "lr": args.crf_lr},
]
)
else:
model = AutoModelForTokenClassification.from_pretrained(
check_point,
num_labels=len(id2label),
ignore_mismatched_sizes=True,
)
model.config.id2label = id2label
model.config.label2id = label2id
if args.freeze_base_model:
for param in model.base_model.parameters():
param.requires_grad = False
tokenized_dataset = dataset.map(
tokenize_and_align_labels,
batched=True,
remove_columns=dataset["train"].column_names,
fn_kwargs={"tokenizer": tokenizer},
)
data_collator = DataCollatorForTokenClassification(tokenizer=tokenizer)
training_args = TrainingArguments(
args.repo_name,
evaluation_strategy="epoch",
save_strategy="epoch",
learning_rate=args.lr,
num_train_epochs=args.epochs,
weight_decay=0.01,
per_device_train_batch_size=args.batch_size,
logging_strategy="epoch",
metric_for_best_model="f1",
load_best_model_at_end=True,
save_total_limit=1,
report_to="none",
)
trainer = Trainer(
model=model,
args=training_args,
train_dataset=tokenized_dataset["train"],
eval_dataset=tokenized_dataset["validation"],
data_collator=data_collator,
compute_metrics=compute_metrics,
tokenizer=tokenizer,
optimizers=(optimizer, None) if optimizer else None,
)
if not args.dry_run:
trainer.train()
trainer.save_model(args.repo_name)
metric = trainer.evaluate()
print("Evaluate the best model on the validation set:")
print(metric)
if args.push_to_hub:
trainer.push_to_hub()
else:
trainer.create_model_card()
# python train.py --check_point ./RoBERTa-ext-large-chinese-finetuned-ner --repo_name RoBERTa-ext-large-crf-chinese-finetuned-ner --push_to_hub --epochs 10