forked from kenshohara/3D-ResNets-PyTorch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.py
428 lines (360 loc) · 16.3 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
from pathlib import Path
import json
import random
import os
import numpy as np
import torch
from torch.nn import CrossEntropyLoss
from torch.optim import SGD, lr_scheduler
import torch.multiprocessing as mp
import torch.distributed as dist
from torch.backends import cudnn
import torchvision
from opts import parse_opts
from model import (generate_model, load_pretrained_model, make_data_parallel,
get_fine_tuning_parameters)
from mean import get_mean_std
from spatial_transforms import (Compose, Normalize, Resize, CenterCrop,
CornerCrop, MultiScaleCornerCrop,
RandomResizedCrop, RandomHorizontalFlip,
ToTensor, ScaleValue, ColorJitter,
PickFirstChannels)
from temporal_transforms import (LoopPadding, TemporalRandomCrop,
TemporalCenterCrop, TemporalEvenCrop,
SlidingWindow, TemporalSubsampling)
from temporal_transforms import Compose as TemporalCompose
from dataset import get_training_data, get_validation_data, get_inference_data
from utils import Logger, worker_init_fn, get_lr
from training import train_epoch
from validation import val_epoch
import inference
def json_serial(obj):
if isinstance(obj, Path):
return str(obj)
def get_opt():
opt = parse_opts()
if opt.root_path is not None:
opt.video_path = opt.root_path / opt.video_path
opt.annotation_path = opt.root_path / opt.annotation_path
opt.result_path = opt.root_path / opt.result_path
if opt.resume_path is not None:
opt.resume_path = opt.root_path / opt.resume_path
if opt.pretrain_path is not None:
opt.pretrain_path = opt.root_path / opt.pretrain_path
if opt.pretrain_path is not None:
opt.n_finetune_classes = opt.n_classes
opt.n_classes = opt.n_pretrain_classes
if opt.output_topk <= 0:
opt.output_topk = opt.n_classes
if opt.inference_batch_size == 0:
opt.inference_batch_size = opt.batch_size
opt.arch = '{}-{}'.format(opt.model, opt.model_depth)
opt.begin_epoch = 1
opt.mean, opt.std = get_mean_std(opt.value_scale, dataset=opt.mean_dataset)
opt.n_input_channels = 3
if opt.input_type == 'flow':
opt.n_input_channels = 2
opt.mean = opt.mean[:2]
opt.std = opt.std[:2]
if opt.distributed:
opt.dist_rank = int(os.environ["OMPI_COMM_WORLD_RANK"])
if opt.dist_rank == 0:
print(opt)
with (opt.result_path / 'opts.json').open('w') as opt_file:
json.dump(vars(opt), opt_file, default=json_serial)
else:
print(opt)
with (opt.result_path / 'opts.json').open('w') as opt_file:
json.dump(vars(opt), opt_file, default=json_serial)
return opt
def resume_model(resume_path, arch, model):
print('loading checkpoint {} model'.format(resume_path))
checkpoint = torch.load(resume_path, map_location='cpu')
assert arch == checkpoint['arch']
if hasattr(model, 'module'):
model.module.load_state_dict(checkpoint['state_dict'])
else:
model.load_state_dict(checkpoint['state_dict'])
return model
def resume_train_utils(resume_path, begin_epoch, optimizer, scheduler):
print('loading checkpoint {} train utils'.format(resume_path))
checkpoint = torch.load(resume_path, map_location='cpu')
begin_epoch = checkpoint['epoch'] + 1
if optimizer is not None and 'optimizer' in checkpoint:
optimizer.load_state_dict(checkpoint['optimizer'])
if scheduler is not None and 'scheduler' in checkpoint:
scheduler.load_state_dict(checkpoint['scheduler'])
return begin_epoch, optimizer, scheduler
def get_normalize_method(mean, std, no_mean_norm, no_std_norm):
if no_mean_norm:
if no_std_norm:
return Normalize([0, 0, 0], [1, 1, 1])
else:
return Normalize([0, 0, 0], std)
else:
if no_std_norm:
return Normalize(mean, [1, 1, 1])
else:
return Normalize(mean, std)
def get_train_utils(opt, model_parameters):
assert opt.train_crop in ['random', 'corner', 'center']
spatial_transform = []
if opt.train_crop == 'random':
spatial_transform.append(
RandomResizedCrop(
opt.sample_size, (opt.train_crop_min_scale, 1.0),
(opt.train_crop_min_ratio, 1.0 / opt.train_crop_min_ratio)))
elif opt.train_crop == 'corner':
scales = [1.0]
scale_step = 1 / (2**(1 / 4))
for _ in range(1, 5):
scales.append(scales[-1] * scale_step)
spatial_transform.append(MultiScaleCornerCrop(opt.sample_size, scales))
elif opt.train_crop == 'center':
spatial_transform.append(Resize(opt.sample_size))
spatial_transform.append(CenterCrop(opt.sample_size))
normalize = get_normalize_method(opt.mean, opt.std, opt.no_mean_norm,
opt.no_std_norm)
if not opt.no_hflip:
spatial_transform.append(RandomHorizontalFlip())
if opt.colorjitter:
spatial_transform.append(ColorJitter())
spatial_transform.append(ToTensor())
if opt.input_type == 'flow':
spatial_transform.append(PickFirstChannels(n=2))
spatial_transform.append(ScaleValue(opt.value_scale))
spatial_transform.append(normalize)
spatial_transform = Compose(spatial_transform)
assert opt.train_t_crop in ['random', 'center']
temporal_transform = []
if opt.sample_t_stride > 1:
temporal_transform.append(TemporalSubsampling(opt.sample_t_stride))
if opt.train_t_crop == 'random':
temporal_transform.append(TemporalRandomCrop(opt.sample_duration))
elif opt.train_t_crop == 'center':
temporal_transform.append(TemporalCenterCrop(opt.sample_duration))
temporal_transform = TemporalCompose(temporal_transform)
train_data = get_training_data(opt.video_path, opt.annotation_path,
opt.dataset, opt.input_type, opt.file_type,
spatial_transform, temporal_transform)
if opt.distributed:
train_sampler = torch.utils.data.distributed.DistributedSampler(
train_data)
else:
train_sampler = None
train_loader = torch.utils.data.DataLoader(train_data,
batch_size=opt.batch_size,
shuffle=(train_sampler is None),
num_workers=opt.n_threads,
pin_memory=True,
sampler=train_sampler,
worker_init_fn=worker_init_fn)
if opt.is_master_node:
train_logger = Logger(opt.result_path / 'train.log',
['epoch', 'loss', 'acc', 'lr'])
train_batch_logger = Logger(
opt.result_path / 'train_batch.log',
['epoch', 'batch', 'iter', 'loss', 'acc', 'lr'])
else:
train_logger = None
train_batch_logger = None
if opt.nesterov:
dampening = 0
else:
dampening = opt.dampening
optimizer = SGD(model_parameters,
lr=opt.learning_rate,
momentum=opt.momentum,
dampening=dampening,
weight_decay=opt.weight_decay,
nesterov=opt.nesterov)
assert opt.lr_scheduler in ['plateau', 'multistep']
assert not (opt.lr_scheduler == 'plateau' and opt.no_val)
if opt.lr_scheduler == 'plateau':
scheduler = lr_scheduler.ReduceLROnPlateau(
optimizer, 'min', patience=opt.plateau_patience)
else:
scheduler = lr_scheduler.MultiStepLR(optimizer,
opt.multistep_milestones)
return (train_loader, train_sampler, train_logger, train_batch_logger,
optimizer, scheduler)
def get_val_utils(opt):
normalize = get_normalize_method(opt.mean, opt.std, opt.no_mean_norm,
opt.no_std_norm)
spatial_transform = [
Resize(opt.sample_size),
CenterCrop(opt.sample_size),
ToTensor()
]
if opt.input_type == 'flow':
spatial_transform.append(PickFirstChannels(n=2))
spatial_transform.extend([ScaleValue(opt.value_scale), normalize])
spatial_transform = Compose(spatial_transform)
temporal_transform = []
if opt.sample_t_stride > 1:
temporal_transform.append(TemporalSubsampling(opt.sample_t_stride))
temporal_transform.append(
TemporalEvenCrop(opt.sample_duration, opt.n_val_samples))
temporal_transform = TemporalCompose(temporal_transform)
val_data, collate_fn = get_validation_data(opt.video_path,
opt.annotation_path, opt.dataset,
opt.input_type, opt.file_type,
spatial_transform,
temporal_transform)
if opt.distributed:
val_sampler = torch.utils.data.distributed.DistributedSampler(
val_data, shuffle=False)
else:
val_sampler = None
val_loader = torch.utils.data.DataLoader(val_data,
batch_size=(opt.batch_size //
opt.n_val_samples),
shuffle=False,
num_workers=opt.n_threads,
pin_memory=True,
sampler=val_sampler,
worker_init_fn=worker_init_fn,
collate_fn=collate_fn)
if opt.is_master_node:
val_logger = Logger(opt.result_path / 'val.log',
['epoch', 'loss', 'acc'])
else:
val_logger = None
return val_loader, val_logger
def get_inference_utils(opt):
assert opt.inference_crop in ['center', 'nocrop']
normalize = get_normalize_method(opt.mean, opt.std, opt.no_mean_norm,
opt.no_std_norm)
spatial_transform = [Resize(opt.sample_size)]
if opt.inference_crop == 'center':
spatial_transform.append(CenterCrop(opt.sample_size))
spatial_transform.append(ToTensor())
if opt.input_type == 'flow':
spatial_transform.append(PickFirstChannels(n=2))
spatial_transform.extend([ScaleValue(opt.value_scale), normalize])
spatial_transform = Compose(spatial_transform)
temporal_transform = []
if opt.sample_t_stride > 1:
temporal_transform.append(TemporalSubsampling(opt.sample_t_stride))
temporal_transform.append(
SlidingWindow(opt.sample_duration, opt.inference_stride))
temporal_transform = TemporalCompose(temporal_transform)
inference_data, collate_fn = get_inference_data(
opt.video_path, opt.annotation_path, opt.dataset, opt.input_type,
opt.file_type, opt.inference_subset, spatial_transform,
temporal_transform)
inference_loader = torch.utils.data.DataLoader(
inference_data,
batch_size=opt.inference_batch_size,
shuffle=False,
num_workers=opt.n_threads,
pin_memory=True,
worker_init_fn=worker_init_fn,
collate_fn=collate_fn)
return inference_loader, inference_data.class_names
def save_checkpoint(save_file_path, epoch, arch, model, optimizer, scheduler):
if hasattr(model, 'module'):
model_state_dict = model.module.state_dict()
else:
model_state_dict = model.state_dict()
save_states = {
'epoch': epoch,
'arch': arch,
'state_dict': model_state_dict,
'optimizer': optimizer.state_dict(),
'scheduler': scheduler.state_dict()
}
torch.save(save_states, save_file_path)
def main_worker(index, opt):
random.seed(opt.manual_seed)
np.random.seed(opt.manual_seed)
torch.manual_seed(opt.manual_seed)
if index >= 0 and opt.device.type == 'cuda':
opt.device = torch.device(f'cuda:{index}')
if opt.distributed:
opt.dist_rank = opt.dist_rank * opt.ngpus_per_node + index
dist.init_process_group(backend='nccl',
init_method=opt.dist_url,
world_size=opt.world_size,
rank=opt.dist_rank)
opt.batch_size = int(opt.batch_size / opt.ngpus_per_node)
opt.n_threads = int(
(opt.n_threads + opt.ngpus_per_node - 1) / opt.ngpus_per_node)
opt.is_master_node = not opt.distributed or opt.dist_rank == 0
model = generate_model(opt)
if opt.batchnorm_sync:
assert opt.distributed, 'SyncBatchNorm only supports DistributedDataParallel.'
model = torch.nn.SyncBatchNorm.convert_sync_batchnorm(model)
if opt.pretrain_path:
model = load_pretrained_model(model, opt.pretrain_path, opt.model,
opt.n_finetune_classes)
if opt.resume_path is not None:
model = resume_model(opt.resume_path, opt.arch, model)
model = make_data_parallel(model, opt.distributed, opt.device)
if opt.pretrain_path:
parameters = get_fine_tuning_parameters(model, opt.ft_begin_module)
else:
parameters = model.parameters()
if opt.is_master_node:
print(model)
criterion = CrossEntropyLoss().to(opt.device)
if not opt.no_train:
(train_loader, train_sampler, train_logger, train_batch_logger,
optimizer, scheduler) = get_train_utils(opt, parameters)
if opt.resume_path is not None:
opt.begin_epoch, optimizer, scheduler = resume_train_utils(
opt.resume_path, opt.begin_epoch, optimizer, scheduler)
if opt.overwrite_milestones:
scheduler.milestones = opt.multistep_milestones
if not opt.no_val:
val_loader, val_logger = get_val_utils(opt)
if opt.tensorboard and opt.is_master_node:
from torch.utils.tensorboard import SummaryWriter
if opt.begin_epoch == 1:
tb_writer = SummaryWriter(log_dir=opt.result_path)
else:
tb_writer = SummaryWriter(log_dir=opt.result_path,
purge_step=opt.begin_epoch)
else:
tb_writer = None
prev_val_loss = None
for i in range(opt.begin_epoch, opt.n_epochs + 1):
if not opt.no_train:
if opt.distributed:
train_sampler.set_epoch(i)
current_lr = get_lr(optimizer)
train_epoch(i, train_loader, model, criterion, optimizer,
opt.device, current_lr, train_logger,
train_batch_logger, tb_writer, opt.distributed)
if i % opt.checkpoint == 0 and opt.is_master_node:
save_file_path = opt.result_path / 'save_{}.pth'.format(i)
save_checkpoint(save_file_path, i, opt.arch, model, optimizer,
scheduler)
if not opt.no_val:
prev_val_loss = val_epoch(i, val_loader, model, criterion,
opt.device, val_logger, tb_writer,
opt.distributed)
if not opt.no_train and opt.lr_scheduler == 'multistep':
scheduler.step()
elif not opt.no_train and opt.lr_scheduler == 'plateau':
scheduler.step(prev_val_loss)
if opt.inference:
inference_loader, inference_class_names = get_inference_utils(opt)
inference_result_path = opt.result_path / '{}.json'.format(
opt.inference_subset)
inference.inference(inference_loader, model, inference_result_path,
inference_class_names, opt.inference_no_average,
opt.output_topk)
if __name__ == '__main__':
opt = get_opt()
opt.device = torch.device('cpu' if opt.no_cuda else 'cuda')
if not opt.no_cuda:
cudnn.benchmark = True
if opt.accimage:
torchvision.set_image_backend('accimage')
opt.ngpus_per_node = torch.cuda.device_count()
if opt.distributed:
opt.world_size = opt.ngpus_per_node * opt.world_size
mp.spawn(main_worker, nprocs=opt.ngpus_per_node, args=(opt,))
else:
main_worker(-1, opt)