forked from tukl-msd/LSTM-PYNQ
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathocr.py
130 lines (106 loc) · 5.09 KB
/
ocr.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
# Copyright (c) 2018, TU Kaiserslautern
# Copyright (c) 2018, Xilinx, Inc.
# All rights reserved.
#
# Redistribution and use in source and binary forms, with or without
# modification, are permitted provided that the following conditions are met:
#
# 1. Redistributions of source code must retain the above copyright notice,
# this list of conditions and the following disclaimer.
#
# 2. Redistributions in binary form must reproduce the above copyright
# notice, this list of conditions and the following disclaimer in the
# documentation and/or other materials provided with the distribution.
#
# 3. Neither the name of the copyright holder nor the names of its
# contributors may be used to endorse or promote products derived from
# this software without specific prior written permission.
#
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
# AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
# THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
# PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR
# CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
# EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
# PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
# OR BUSINESS INTERRUPTION). HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
# WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
# OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
# ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
import os
from abc import ABCMeta, abstractmethod, abstractproperty
import numpy as np
import cv2 as cv2
from lstm import PynqLSTM, RUNTIME_HW, LSTM_DATA_DIR
NETWORK_FRAKTUR_OCR = "lstm-fraktur-ocr-pynq"
FRAKTUR_DATA_DIR = os.path.join(LSTM_DATA_DIR, 'fraktur')
FRAKTUR_ALPHABET = os.path.join(FRAKTUR_DATA_DIR, 'alphabet.txt')
MAX_OCR_LENGTH = 1024
PADDING = 16
MIN_CLIP = -1.75
MAX_CLIP = 3.75
class PynqOCR(PynqLSTM):
__metaclass__ = ABCMeta
def __init__(self, runtime, network, load_overlay, alphabet_path):
super(PynqOCR, self).__init__(runtime, network, load_overlay)
self.alphabet_path = alphabet_path
@property
def ops_per_seq_element(self):
return self.lstm_ops_per_seq_element + self.fc_ops_per_seq_element
@property
def fc_ops_per_seq_element(self):
return 2 * self.hidden_size * 2 * self.alphabet_size if self.peepholes_enabled else 2 * self.hidden_size * self.alphabet_size
def inference(self, input_data):
input_data = self.preprocess(input_data)
input_data_post_process_width = int(len(input_data) / self.input_size)
input_data_f = self._ffi.cast("float *", input_data.ctypes.data)
keepalive = []
out_buffer = self._ffi.new("char[]", MAX_OCR_LENGTH)
ms_compute_time = self._ffi.new("float *")
keepalive.append(out_buffer)
self.interface.lstm_ocr_wrapper(input_data_f, len(input_data), out_buffer, bytes(self.alphabet_path, encoding='ascii'), ms_compute_time)
mops_per_s = 0.001 * self.ops_per_seq_element * input_data_post_process_width / ms_compute_time[0]
return mops_per_s, ms_compute_time[0], self._ffi.string(out_buffer).decode('utf8')
@abstractproperty
def alphabet_size(self):
pass
class PynqFrakturOCR(PynqOCR):
def __init__(self, runtime=RUNTIME_HW, load_overlay=True):
super(PynqFrakturOCR, self).__init__(runtime, NETWORK_FRAKTUR_OCR, load_overlay, FRAKTUR_ALPHABET)
self.fraktur_mean = np.loadtxt(os.path.join(FRAKTUR_DATA_DIR, 'mean.txt'))
self.fraktur_std_deviation = np.loadtxt(os.path.join(FRAKTUR_DATA_DIR, 'std_deviation.txt'))
@property
def ffi_interface(self):
return """
void lstm_ocr_wrapper(float* input_data, int flat_length, char* out_buffer, char* alphabet_path, float* ms_compute_time);
"""
@property
def alphabet_size(self):
return 110
@property
def input_size(self):
return 25
@property
def hidden_size(self):
return 100
@property
def peepholes_enabled(self):
return True
@property
def bias_enabled(self):
return True
@property
def bidirectional_enabled(self):
return True
def preprocess(self, input_data):
input_data = input_data * 1.0 / np.amax(input_data)
input_data = np.amax(input_data) - input_data
input_data = input_data.T
w = input_data.shape[1]
input_data = np.vstack([np.zeros((PADDING, w)),input_data,np.zeros((PADDING, w))])
input_data = (input_data - self.fraktur_mean) / self.fraktur_std_deviation
input_data = input_data.reshape(-1,1)
input_data = np.round(input_data * 4)/4
input_data = np.clip(input_data, a_min=float(MIN_CLIP), a_max=float(MAX_CLIP))
input_data = input_data.astype(np.float32)
return input_data