forked from MoatLab/FEMU
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathptimer.c
485 lines (426 loc) · 14.2 KB
/
ptimer.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
/*
* General purpose implementation of a simple periodic countdown timer.
*
* Copyright (c) 2007 CodeSourcery.
*
* This code is licensed under the GNU LGPL.
*/
#include "qemu/osdep.h"
#include "hw/ptimer.h"
#include "migration/vmstate.h"
#include "qemu/host-utils.h"
#include "sysemu/replay.h"
#include "sysemu/cpu-timers.h"
#include "sysemu/qtest.h"
#include "block/aio.h"
#include "hw/clock.h"
#define DELTA_ADJUST 1
#define DELTA_NO_ADJUST -1
struct ptimer_state
{
uint8_t enabled; /* 0 = disabled, 1 = periodic, 2 = oneshot. */
uint64_t limit;
uint64_t delta;
uint32_t period_frac;
int64_t period;
int64_t last_event;
int64_t next_event;
uint8_t policy_mask;
QEMUTimer *timer;
ptimer_cb callback;
void *callback_opaque;
/*
* These track whether we're in a transaction block, and if we
* need to do a timer reload when the block finishes. They don't
* need to be migrated because migration can never happen in the
* middle of a transaction block.
*/
bool in_transaction;
bool need_reload;
};
/* Use a bottom-half routine to avoid reentrancy issues. */
static void ptimer_trigger(ptimer_state *s)
{
s->callback(s->callback_opaque);
}
static void ptimer_reload(ptimer_state *s, int delta_adjust)
{
uint32_t period_frac;
uint64_t period;
uint64_t delta;
bool suppress_trigger = false;
/*
* Note that if delta_adjust is 0 then we must be here because of
* a count register write or timer start, not because of timer expiry.
* In that case the policy might require us to suppress the timer trigger
* that we would otherwise generate for a zero delta.
*/
if (delta_adjust == 0 &&
(s->policy_mask & PTIMER_POLICY_TRIGGER_ONLY_ON_DECREMENT)) {
suppress_trigger = true;
}
if (s->delta == 0 && !(s->policy_mask & PTIMER_POLICY_NO_IMMEDIATE_TRIGGER)
&& !suppress_trigger) {
ptimer_trigger(s);
}
/*
* Note that ptimer_trigger() might call the device callback function,
* which can then modify timer state, so we must not cache any fields
* from ptimer_state until after we have called it.
*/
delta = s->delta;
period = s->period;
period_frac = s->period_frac;
if (delta == 0 && !(s->policy_mask & PTIMER_POLICY_NO_IMMEDIATE_RELOAD)) {
delta = s->delta = s->limit;
}
if (s->period == 0) {
if (!qtest_enabled()) {
fprintf(stderr, "Timer with period zero, disabling\n");
}
timer_del(s->timer);
s->enabled = 0;
return;
}
if (s->policy_mask & PTIMER_POLICY_WRAP_AFTER_ONE_PERIOD) {
if (delta_adjust != DELTA_NO_ADJUST) {
delta += delta_adjust;
}
}
if (delta == 0 && (s->policy_mask & PTIMER_POLICY_CONTINUOUS_TRIGGER)) {
if (s->enabled == 1 && s->limit == 0) {
delta = 1;
}
}
if (delta == 0 && (s->policy_mask & PTIMER_POLICY_NO_IMMEDIATE_TRIGGER)) {
if (delta_adjust != DELTA_NO_ADJUST) {
delta = 1;
}
}
if (delta == 0 && (s->policy_mask & PTIMER_POLICY_NO_IMMEDIATE_RELOAD)) {
if (s->enabled == 1 && s->limit != 0) {
delta = 1;
}
}
if (delta == 0) {
if (s->enabled == 0) {
/* trigger callback disabled the timer already */
return;
}
if (!qtest_enabled()) {
fprintf(stderr, "Timer with delta zero, disabling\n");
}
timer_del(s->timer);
s->enabled = 0;
return;
}
/*
* Artificially limit timeout rate to something
* achievable under QEMU. Otherwise, QEMU spends all
* its time generating timer interrupts, and there
* is no forward progress.
* About ten microseconds is the fastest that really works
* on the current generation of host machines.
*/
if (s->enabled == 1 && (delta * period < 10000) &&
!icount_enabled() && !qtest_enabled()) {
period = 10000 / delta;
period_frac = 0;
}
s->last_event = s->next_event;
s->next_event = s->last_event + delta * period;
if (period_frac) {
s->next_event += ((int64_t)period_frac * delta) >> 32;
}
timer_mod(s->timer, s->next_event);
}
static void ptimer_tick(void *opaque)
{
ptimer_state *s = (ptimer_state *)opaque;
bool trigger = true;
/*
* We perform all the tick actions within a begin/commit block
* because the callback function that ptimer_trigger() calls
* might make calls into the ptimer APIs that provoke another
* trigger, and we want that to cause the callback function
* to be called iteratively, not recursively.
*/
ptimer_transaction_begin(s);
if (s->enabled == 2) {
s->delta = 0;
s->enabled = 0;
} else {
int delta_adjust = DELTA_ADJUST;
if (s->delta == 0 || s->limit == 0) {
/* If a "continuous trigger" policy is not used and limit == 0,
we should error out. delta == 0 means that this tick is
caused by a "no immediate reload" policy, so it shouldn't
be adjusted. */
delta_adjust = DELTA_NO_ADJUST;
}
if (!(s->policy_mask & PTIMER_POLICY_NO_IMMEDIATE_TRIGGER)) {
/* Avoid re-trigger on deferred reload if "no immediate trigger"
policy isn't used. */
trigger = (delta_adjust == DELTA_ADJUST);
}
s->delta = s->limit;
ptimer_reload(s, delta_adjust);
}
if (trigger) {
ptimer_trigger(s);
}
ptimer_transaction_commit(s);
}
uint64_t ptimer_get_count(ptimer_state *s)
{
uint64_t counter;
if (s->enabled && s->delta != 0) {
int64_t now = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
int64_t next = s->next_event;
int64_t last = s->last_event;
bool expired = (now - next >= 0);
bool oneshot = (s->enabled == 2);
/* Figure out the current counter value. */
if (expired) {
/* Prevent timer underflowing if it should already have
triggered. */
counter = 0;
} else {
uint64_t rem;
uint64_t div;
int clz1, clz2;
int shift;
uint32_t period_frac = s->period_frac;
uint64_t period = s->period;
if (!oneshot && (s->delta * period < 10000) &&
!icount_enabled() && !qtest_enabled()) {
period = 10000 / s->delta;
period_frac = 0;
}
/* We need to divide time by period, where time is stored in
rem (64-bit integer) and period is stored in period/period_frac
(64.32 fixed point).
Doing full precision division is hard, so scale values and
do a 64-bit division. The result should be rounded down,
so that the rounding error never causes the timer to go
backwards.
*/
rem = next - now;
div = period;
clz1 = clz64(rem);
clz2 = clz64(div);
shift = clz1 < clz2 ? clz1 : clz2;
rem <<= shift;
div <<= shift;
if (shift >= 32) {
div |= ((uint64_t)period_frac << (shift - 32));
} else {
if (shift != 0)
div |= (period_frac >> (32 - shift));
/* Look at remaining bits of period_frac and round div up if
necessary. */
if ((uint32_t)(period_frac << shift))
div += 1;
}
counter = rem / div;
if (s->policy_mask & PTIMER_POLICY_WRAP_AFTER_ONE_PERIOD) {
/* Before wrapping around, timer should stay with counter = 0
for a one period. */
if (!oneshot && s->delta == s->limit) {
if (now == last) {
/* Counter == delta here, check whether it was
adjusted and if it was, then right now it is
that "one period". */
if (counter == s->limit + DELTA_ADJUST) {
return 0;
}
} else if (counter == s->limit) {
/* Since the counter is rounded down and now != last,
the counter == limit means that delta was adjusted
by +1 and right now it is that adjusted period. */
return 0;
}
}
}
}
if (s->policy_mask & PTIMER_POLICY_NO_COUNTER_ROUND_DOWN) {
/* If now == last then delta == limit, i.e. the counter already
represents the correct value. It would be rounded down a 1ns
later. */
if (now != last) {
counter += 1;
}
}
} else {
counter = s->delta;
}
return counter;
}
void ptimer_set_count(ptimer_state *s, uint64_t count)
{
assert(s->in_transaction);
s->delta = count;
if (s->enabled) {
s->need_reload = true;
}
}
void ptimer_run(ptimer_state *s, int oneshot)
{
bool was_disabled = !s->enabled;
assert(s->in_transaction);
if (was_disabled && s->period == 0) {
if (!qtest_enabled()) {
fprintf(stderr, "Timer with period zero, disabling\n");
}
return;
}
s->enabled = oneshot ? 2 : 1;
if (was_disabled) {
s->need_reload = true;
}
}
/* Pause a timer. Note that this may cause it to "lose" time, even if it
is immediately restarted. */
void ptimer_stop(ptimer_state *s)
{
assert(s->in_transaction);
if (!s->enabled)
return;
s->delta = ptimer_get_count(s);
timer_del(s->timer);
s->enabled = 0;
s->need_reload = false;
}
/* Set counter increment interval in nanoseconds. */
void ptimer_set_period(ptimer_state *s, int64_t period)
{
assert(s->in_transaction);
s->delta = ptimer_get_count(s);
s->period = period;
s->period_frac = 0;
if (s->enabled) {
s->need_reload = true;
}
}
/* Set counter increment interval from a Clock */
void ptimer_set_period_from_clock(ptimer_state *s, const Clock *clk,
unsigned int divisor)
{
/*
* The raw clock period is a 64-bit value in units of 2^-32 ns;
* put another way it's a 32.32 fixed-point ns value. Our internal
* representation of the period is 64.32 fixed point ns, so
* the conversion is simple.
*/
uint64_t raw_period = clock_get(clk);
uint64_t period_frac;
assert(s->in_transaction);
s->delta = ptimer_get_count(s);
s->period = extract64(raw_period, 32, 32);
period_frac = extract64(raw_period, 0, 32);
/*
* divisor specifies a possible frequency divisor between the
* clock and the timer, so it is a multiplier on the period.
* We do the multiply after splitting the raw period out into
* period and frac to avoid having to do a 32*64->96 multiply.
*/
s->period *= divisor;
period_frac *= divisor;
s->period += extract64(period_frac, 32, 32);
s->period_frac = (uint32_t)period_frac;
if (s->enabled) {
s->need_reload = true;
}
}
/* Set counter frequency in Hz. */
void ptimer_set_freq(ptimer_state *s, uint32_t freq)
{
assert(s->in_transaction);
s->delta = ptimer_get_count(s);
s->period = 1000000000ll / freq;
s->period_frac = (1000000000ll << 32) / freq;
if (s->enabled) {
s->need_reload = true;
}
}
/* Set the initial countdown value. If reload is nonzero then also set
count = limit. */
void ptimer_set_limit(ptimer_state *s, uint64_t limit, int reload)
{
assert(s->in_transaction);
s->limit = limit;
if (reload)
s->delta = limit;
if (s->enabled && reload) {
s->need_reload = true;
}
}
uint64_t ptimer_get_limit(ptimer_state *s)
{
return s->limit;
}
void ptimer_transaction_begin(ptimer_state *s)
{
assert(!s->in_transaction);
s->in_transaction = true;
s->need_reload = false;
}
void ptimer_transaction_commit(ptimer_state *s)
{
assert(s->in_transaction);
/*
* We must loop here because ptimer_reload() can call the callback
* function, which might then update ptimer state in a way that
* means we need to do another reload and possibly another callback.
* A disabled timer never needs reloading (and if we don't check
* this then we loop forever if ptimer_reload() disables the timer).
*/
while (s->need_reload && s->enabled) {
s->need_reload = false;
s->next_event = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
ptimer_reload(s, 0);
}
/* Now we've finished reload we can leave the transaction block. */
s->in_transaction = false;
}
const VMStateDescription vmstate_ptimer = {
.name = "ptimer",
.version_id = 1,
.minimum_version_id = 1,
.fields = (VMStateField[]) {
VMSTATE_UINT8(enabled, ptimer_state),
VMSTATE_UINT64(limit, ptimer_state),
VMSTATE_UINT64(delta, ptimer_state),
VMSTATE_UINT32(period_frac, ptimer_state),
VMSTATE_INT64(period, ptimer_state),
VMSTATE_INT64(last_event, ptimer_state),
VMSTATE_INT64(next_event, ptimer_state),
VMSTATE_TIMER_PTR(timer, ptimer_state),
VMSTATE_END_OF_LIST()
}
};
ptimer_state *ptimer_init(ptimer_cb callback, void *callback_opaque,
uint8_t policy_mask)
{
ptimer_state *s;
/* The callback function is mandatory. */
assert(callback);
s = g_new0(ptimer_state, 1);
s->timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, ptimer_tick, s);
s->policy_mask = policy_mask;
s->callback = callback;
s->callback_opaque = callback_opaque;
/*
* These two policies are incompatible -- trigger-on-decrement implies
* a timer trigger when the count becomes 0, but no-immediate-trigger
* implies a trigger when the count stops being 0.
*/
assert(!((policy_mask & PTIMER_POLICY_TRIGGER_ONLY_ON_DECREMENT) &&
(policy_mask & PTIMER_POLICY_NO_IMMEDIATE_TRIGGER)));
return s;
}
void ptimer_free(ptimer_state *s)
{
timer_free(s->timer);
g_free(s);
}