forked from karlstav/cava
-
Notifications
You must be signed in to change notification settings - Fork 0
/
cavacore.c
565 lines (487 loc) · 21.7 KB
/
cavacore.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
#include "cavacore.h"
#ifndef M_PI
#define M_PI 3.1415926535897932385
#endif
#include <fftw3.h>
#include <math.h>
#include <stdlib.h>
#include <string.h>
struct cava_plan *cava_init(int number_of_bars, unsigned int rate, int channels, int autosens,
double noise_reduction, int low_cut_off, int high_cut_off) {
struct cava_plan *p = malloc(sizeof(struct cava_plan));
p->status = 0;
// sanity checks:
if (channels < 1 || channels > 2) {
snprintf(p->error_message, 1024,
"cava_init called with illegal number of channels: %d, number of channels "
"supported are "
"1 and 2",
channels);
p->status = -1;
return p;
}
if (rate < 1 || rate > 384000) {
snprintf(p->error_message, 1024, "cava_init called with illegal sample rate: %d\n", rate);
p->status = -1;
return p;
}
int treble_buffer_size = 128;
if (rate > 8125 && rate <= 16250)
treble_buffer_size *= 2;
else if (rate > 16250 && rate <= 32500)
treble_buffer_size *= 4;
else if (rate > 32500 && rate <= 75000)
treble_buffer_size *= 8;
else if (rate > 75000 && rate <= 150000)
treble_buffer_size *= 16;
else if (rate > 150000 && rate <= 300000)
treble_buffer_size *= 32;
else if (rate > 300000)
treble_buffer_size *= 64;
if (number_of_bars < 1) {
snprintf(p->error_message, 1024,
"cava_init called with illegal number of bars: %d, number of channels must be "
"positive integer\n",
number_of_bars);
p->status = -1;
return p;
}
if (number_of_bars > treble_buffer_size / 2 + 1) {
snprintf(p->error_message, 1024,
"cava_init called with illegal number of bars: %d, for %d sample rate number of "
"bars can't be more than %d\n",
number_of_bars, rate, treble_buffer_size / 2 + 1);
p->status = -1;
return p;
}
if (low_cut_off < 1 || high_cut_off < 1) {
snprintf(p->error_message, 1024, "low_cut_off must be a positive value\n");
p->status = -1;
return p;
}
if (low_cut_off >= high_cut_off) {
snprintf(p->error_message, 1024, "high_cut_off must be a higher than low_cut_off\n");
p->status = -1;
return p;
}
if ((unsigned int)high_cut_off > rate / 2) {
snprintf(p->error_message, 1024,
"high_cut_off can't be higher than sample rate / 2. (Nyquist Sampling Theorem)\n");
p->status = -1;
return p;
}
p->number_of_bars = number_of_bars;
p->audio_channels = channels;
p->rate = rate;
p->autosens = 1;
p->sens_init = 1;
p->sens = 1.0;
p->autosens = autosens;
p->framerate = 75;
p->frame_skip = 1;
p->noise_reduction = noise_reduction;
p->FFTbassbufferSize = treble_buffer_size * 8;
p->FFTmidbufferSize = treble_buffer_size * 4;
p->FFTtreblebufferSize = treble_buffer_size;
p->input_buffer_size = p->FFTbassbufferSize * channels;
p->input_buffer = (double *)malloc(p->input_buffer_size * sizeof(double));
p->FFTbuffer_lower_cut_off = (int *)malloc((number_of_bars + 1) * sizeof(int));
p->FFTbuffer_upper_cut_off = (int *)malloc((number_of_bars + 1) * sizeof(int));
p->eq = (double *)malloc((number_of_bars + 1) * sizeof(double));
p->cut_off_frequency = (float *)malloc((number_of_bars + 1) * sizeof(float));
p->cava_fall = (double *)malloc(number_of_bars * channels * sizeof(double));
p->cava_mem = (double *)malloc(number_of_bars * channels * sizeof(double));
p->cava_peak = (double *)malloc(number_of_bars * channels * sizeof(double));
p->prev_cava_out = (double *)malloc(number_of_bars * channels * sizeof(double));
// Hann Window calculate multipliers
p->bass_multiplier = (double *)malloc(p->FFTbassbufferSize * sizeof(double));
p->mid_multiplier = (double *)malloc(p->FFTmidbufferSize * sizeof(double));
p->treble_multiplier = (double *)malloc(p->FFTtreblebufferSize * sizeof(double));
for (int i = 0; i < p->FFTbassbufferSize; i++) {
p->bass_multiplier[i] = 0.5 * (1 - cos(2 * M_PI * i / (p->FFTbassbufferSize - 1)));
}
for (int i = 0; i < p->FFTmidbufferSize; i++) {
p->mid_multiplier[i] = 0.5 * (1 - cos(2 * M_PI * i / (p->FFTmidbufferSize - 1)));
}
for (int i = 0; i < p->FFTtreblebufferSize; i++) {
p->treble_multiplier[i] = 0.5 * (1 - cos(2 * M_PI * i / (p->FFTtreblebufferSize - 1)));
}
// BASS
p->in_bass_l = fftw_alloc_real(p->FFTbassbufferSize);
p->in_bass_l_raw = fftw_alloc_real(p->FFTbassbufferSize);
p->out_bass_l = fftw_alloc_complex(p->FFTbassbufferSize / 2 + 1);
p->p_bass_l =
fftw_plan_dft_r2c_1d(p->FFTbassbufferSize, p->in_bass_l, p->out_bass_l, FFTW_MEASURE);
// MID
p->in_mid_l = fftw_alloc_real(p->FFTmidbufferSize);
p->in_mid_l_raw = fftw_alloc_real(p->FFTmidbufferSize);
p->out_mid_l = fftw_alloc_complex(p->FFTmidbufferSize / 2 + 1);
p->p_mid_l = fftw_plan_dft_r2c_1d(p->FFTmidbufferSize, p->in_mid_l, p->out_mid_l, FFTW_MEASURE);
// TREBLE
p->in_treble_l = fftw_alloc_real(p->FFTtreblebufferSize);
p->in_treble_l_raw = fftw_alloc_real(p->FFTtreblebufferSize);
p->out_treble_l = fftw_alloc_complex(p->FFTtreblebufferSize / 2 + 1);
p->p_treble_l =
fftw_plan_dft_r2c_1d(p->FFTtreblebufferSize, p->in_treble_l, p->out_treble_l, FFTW_MEASURE);
memset(p->in_bass_l, 0, sizeof(double) * p->FFTbassbufferSize);
memset(p->in_mid_l, 0, sizeof(double) * p->FFTmidbufferSize);
memset(p->in_treble_l, 0, sizeof(double) * p->FFTtreblebufferSize);
memset(p->in_bass_l_raw, 0, sizeof(double) * p->FFTbassbufferSize);
memset(p->in_mid_l_raw, 0, sizeof(double) * p->FFTmidbufferSize);
memset(p->in_treble_l_raw, 0, sizeof(double) * p->FFTtreblebufferSize);
memset(p->out_bass_l, 0, (p->FFTbassbufferSize / 2 + 1) * sizeof(fftw_complex));
memset(p->out_mid_l, 0, (p->FFTmidbufferSize / 2 + 1) * sizeof(fftw_complex));
memset(p->out_treble_l, 0, (p->FFTtreblebufferSize / 2 + 1) * sizeof(fftw_complex));
if (p->audio_channels == 2) {
// BASS
p->in_bass_r = fftw_alloc_real(p->FFTbassbufferSize);
p->in_bass_r_raw = fftw_alloc_real(p->FFTbassbufferSize);
p->out_bass_r = fftw_alloc_complex(p->FFTbassbufferSize / 2 + 1);
p->p_bass_r =
fftw_plan_dft_r2c_1d(p->FFTbassbufferSize, p->in_bass_r, p->out_bass_r, FFTW_MEASURE);
// MID
p->in_mid_r = fftw_alloc_real(p->FFTmidbufferSize);
p->in_mid_r_raw = fftw_alloc_real(p->FFTmidbufferSize);
p->out_mid_r = fftw_alloc_complex(p->FFTmidbufferSize / 2 + 1);
p->p_mid_r =
fftw_plan_dft_r2c_1d(p->FFTmidbufferSize, p->in_mid_r, p->out_mid_r, FFTW_MEASURE);
// TREBLE
p->in_treble_r = fftw_alloc_real(p->FFTtreblebufferSize);
p->in_treble_r_raw = fftw_alloc_real(p->FFTtreblebufferSize);
p->out_treble_r = fftw_alloc_complex(p->FFTtreblebufferSize / 2 + 1);
p->p_treble_r = fftw_plan_dft_r2c_1d(p->FFTtreblebufferSize, p->in_treble_r,
p->out_treble_r, FFTW_MEASURE);
memset(p->in_bass_r, 0, sizeof(double) * p->FFTbassbufferSize);
memset(p->in_mid_r, 0, sizeof(double) * p->FFTmidbufferSize);
memset(p->in_treble_r, 0, sizeof(double) * p->FFTtreblebufferSize);
memset(p->in_bass_r_raw, 0, sizeof(double) * p->FFTbassbufferSize);
memset(p->in_mid_r_raw, 0, sizeof(double) * p->FFTmidbufferSize);
memset(p->in_treble_r_raw, 0, sizeof(double) * p->FFTtreblebufferSize);
memset(p->out_bass_r, 0, (p->FFTbassbufferSize / 2 + 1) * sizeof(fftw_complex));
memset(p->out_mid_r, 0, (p->FFTmidbufferSize / 2 + 1) * sizeof(fftw_complex));
memset(p->out_treble_r, 0, (p->FFTtreblebufferSize / 2 + 1) * sizeof(fftw_complex));
}
memset(p->input_buffer, 0, sizeof(double) * p->input_buffer_size);
memset(p->cava_fall, 0, sizeof(int) * number_of_bars * channels);
memset(p->cava_mem, 0, sizeof(double) * number_of_bars * channels);
memset(p->cava_peak, 0, sizeof(double) * number_of_bars * channels);
memset(p->prev_cava_out, 0, sizeof(double) * number_of_bars * channels);
// process: calculate cutoff frequencies and eq
int lower_cut_off = low_cut_off;
int upper_cut_off = high_cut_off;
int bass_cut_off = 100;
int treble_cut_off = 500;
// calculate frequency constant (used to distribute bars across the frequency band)
double frequency_constant = log10((float)lower_cut_off / (float)upper_cut_off) /
(1 / ((float)p->number_of_bars + 1) - 1);
float *relative_cut_off = (float *)malloc((p->number_of_bars + 1) * sizeof(float));
p->bass_cut_off_bar = -1;
p->treble_cut_off_bar = -1;
int first_bar = 1;
int first_treble_bar = 0;
int *bar_buffer = (int *)malloc((p->number_of_bars + 1) * sizeof(int));
for (int n = 0; n < p->number_of_bars + 1; n++) {
double bar_distribution_coefficient = frequency_constant * (-1);
bar_distribution_coefficient +=
((float)n + 1) / ((float)p->number_of_bars + 1) * frequency_constant;
p->cut_off_frequency[n] = upper_cut_off * pow(10, bar_distribution_coefficient);
if (n > 0) {
if (p->cut_off_frequency[n - 1] >= p->cut_off_frequency[n] &&
p->cut_off_frequency[n - 1] > bass_cut_off)
p->cut_off_frequency[n] =
p->cut_off_frequency[n - 1] +
(p->cut_off_frequency[n - 1] - p->cut_off_frequency[n - 2]);
}
relative_cut_off[n] = p->cut_off_frequency[n] / (p->rate / 2);
// remember nyquist!, per my calculations this should be rate/2
// and nyquist freq in M/2 but testing shows it is not...
// or maybe the nq freq is in M/4
p->eq[n] = pow(p->cut_off_frequency[n], 1);
// the numbers that come out of the FFT are verry high
// the EQ is used to "normalize" them by dividing with this very huge number
p->eq[n] /= pow(2, 29);
p->eq[n] /= log2(p->FFTbassbufferSize);
if (p->cut_off_frequency[n] < bass_cut_off) {
// BASS
bar_buffer[n] = 1;
p->FFTbuffer_lower_cut_off[n] = relative_cut_off[n] * (p->FFTbassbufferSize / 2);
p->bass_cut_off_bar++;
p->treble_cut_off_bar++;
if (p->bass_cut_off_bar > 0)
first_bar = 0;
if (p->FFTbuffer_lower_cut_off[n] > p->FFTbassbufferSize / 2) {
p->FFTbuffer_lower_cut_off[n] = p->FFTbassbufferSize / 2;
}
} else if (p->cut_off_frequency[n] > bass_cut_off &&
p->cut_off_frequency[n] < treble_cut_off) {
// MID
bar_buffer[n] = 2;
p->FFTbuffer_lower_cut_off[n] = relative_cut_off[n] * (p->FFTmidbufferSize / 2);
p->treble_cut_off_bar++;
if ((p->treble_cut_off_bar - p->bass_cut_off_bar) == 1) {
first_bar = 1;
if (n > 0) {
p->FFTbuffer_upper_cut_off[n - 1] =
relative_cut_off[n] * (p->FFTbassbufferSize / 2);
}
} else {
first_bar = 0;
}
if (p->FFTbuffer_lower_cut_off[n] > p->FFTmidbufferSize / 2) {
p->FFTbuffer_lower_cut_off[n] = p->FFTmidbufferSize / 2;
}
} else {
// TREBLE
bar_buffer[n] = 3;
p->FFTbuffer_lower_cut_off[n] = relative_cut_off[n] * (p->FFTtreblebufferSize / 2);
first_treble_bar++;
if (first_treble_bar == 1) {
first_bar = 1;
if (n > 0) {
p->FFTbuffer_upper_cut_off[n - 1] =
relative_cut_off[n] * (p->FFTmidbufferSize / 2);
}
} else {
first_bar = 0;
}
if (p->FFTbuffer_lower_cut_off[n] > p->FFTtreblebufferSize / 2) {
p->FFTbuffer_lower_cut_off[n] = p->FFTtreblebufferSize / 2;
}
}
if (n > 0) {
if (!first_bar) {
p->FFTbuffer_upper_cut_off[n - 1] = p->FFTbuffer_lower_cut_off[n] - 1;
// pushing the spectrum up if the exponential function gets "clumped" in the
// bass and caluclating new cut off frequencies
if (p->FFTbuffer_lower_cut_off[n] <= p->FFTbuffer_lower_cut_off[n - 1]) {
// check if there is room for more first
int room_for_more = 0;
if (bar_buffer[n] == 1) {
if (p->FFTbuffer_lower_cut_off[n - 1] + 1 < p->FFTbassbufferSize / 2 + 1)
room_for_more = 1;
} else if (bar_buffer[n] == 2) {
if (p->FFTbuffer_lower_cut_off[n - 1] + 1 < p->FFTmidbufferSize / 2 + 1)
room_for_more = 1;
} else if (bar_buffer[n] == 3) {
if (p->FFTbuffer_lower_cut_off[n - 1] + 1 < p->FFTtreblebufferSize / 2 + 1)
room_for_more = 1;
}
if (room_for_more) {
// push the spectrum up
p->FFTbuffer_lower_cut_off[n] = p->FFTbuffer_lower_cut_off[n - 1] + 1;
p->FFTbuffer_upper_cut_off[n - 1] = p->FFTbuffer_lower_cut_off[n] - 1;
// calculate new cut off frequency
if (bar_buffer[n] == 1)
relative_cut_off[n] = (float)(p->FFTbuffer_lower_cut_off[n]) /
((float)p->FFTbassbufferSize / 2);
else if (bar_buffer[n] == 2)
relative_cut_off[n] = (float)(p->FFTbuffer_lower_cut_off[n]) /
((float)p->FFTmidbufferSize / 2);
else if (bar_buffer[n] == 3)
relative_cut_off[n] = (float)(p->FFTbuffer_lower_cut_off[n]) /
((float)p->FFTtreblebufferSize / 2);
p->cut_off_frequency[n] = relative_cut_off[n] * ((float)p->rate / 2);
}
}
} else {
if (p->FFTbuffer_upper_cut_off[n - 1] <= p->FFTbuffer_lower_cut_off[n - 1])
p->FFTbuffer_upper_cut_off[n - 1] = p->FFTbuffer_lower_cut_off[n - 1] + 1;
}
}
}
free(bar_buffer);
free(relative_cut_off);
return p;
}
void cava_execute(double *cava_in, int new_samples, double *cava_out, struct cava_plan *p) {
// do not overflow
if (new_samples > p->input_buffer_size) {
new_samples = p->input_buffer_size;
}
int silence = 1;
if (new_samples > 0) {
p->framerate -= p->framerate / 64;
p->framerate += (double)((p->rate * p->audio_channels * p->frame_skip) / new_samples) / 64;
p->frame_skip = 1;
// shifting input buffer
for (uint16_t n = p->input_buffer_size - 1; n >= new_samples; n--) {
p->input_buffer[n] = p->input_buffer[n - new_samples];
}
// fill the input buffer
for (uint16_t n = 0; n < new_samples; n++) {
p->input_buffer[new_samples - n - 1] = cava_in[n];
if (cava_in[n]) {
silence = 0;
}
}
} else {
p->frame_skip++;
}
// fill the bass, mid and treble buffers
for (uint16_t n = 0; n < p->FFTbassbufferSize; n++) {
if (p->audio_channels == 2) {
p->in_bass_r_raw[n] = p->input_buffer[n * 2];
p->in_bass_l_raw[n] = p->input_buffer[n * 2 + 1];
} else {
p->in_bass_l_raw[n] = p->input_buffer[n];
}
}
for (uint16_t n = 0; n < p->FFTmidbufferSize; n++) {
if (p->audio_channels == 2) {
p->in_mid_r_raw[n] = p->input_buffer[n * 2];
p->in_mid_l_raw[n] = p->input_buffer[n * 2 + 1];
} else {
p->in_mid_l_raw[n] = p->input_buffer[n];
}
}
for (uint16_t n = 0; n < p->FFTtreblebufferSize; n++) {
if (p->audio_channels == 2) {
p->in_treble_r_raw[n] = p->input_buffer[n * 2];
p->in_treble_l_raw[n] = p->input_buffer[n * 2 + 1];
} else {
p->in_treble_l_raw[n] = p->input_buffer[n];
}
}
// Hann Window
for (int i = 0; i < p->FFTbassbufferSize; i++) {
p->in_bass_l[i] = p->bass_multiplier[i] * p->in_bass_l_raw[i];
if (p->audio_channels == 2)
p->in_bass_r[i] = p->bass_multiplier[i] * p->in_bass_r_raw[i];
}
for (int i = 0; i < p->FFTmidbufferSize; i++) {
p->in_mid_l[i] = p->mid_multiplier[i] * p->in_mid_l_raw[i];
if (p->audio_channels == 2)
p->in_mid_r[i] = p->mid_multiplier[i] * p->in_mid_r_raw[i];
}
for (int i = 0; i < p->FFTtreblebufferSize; i++) {
p->in_treble_l[i] = p->treble_multiplier[i] * p->in_treble_l_raw[i];
if (p->audio_channels == 2)
p->in_treble_r[i] = p->treble_multiplier[i] * p->in_treble_r_raw[i];
}
// process: execute FFT and sort frequency bands
fftw_execute(p->p_bass_l);
fftw_execute(p->p_mid_l);
fftw_execute(p->p_treble_l);
if (p->audio_channels == 2) {
fftw_execute(p->p_bass_r);
fftw_execute(p->p_mid_r);
fftw_execute(p->p_treble_r);
}
// process: separate frequency bands
for (int n = 0; n < p->number_of_bars; n++) {
double temp_l = 0;
double temp_r = 0;
// process: add upp FFT values within bands
for (int i = p->FFTbuffer_lower_cut_off[n]; i <= p->FFTbuffer_upper_cut_off[n]; i++) {
if (n <= p->bass_cut_off_bar) {
temp_l += hypot(p->out_bass_l[i][0], p->out_bass_l[i][1]);
if (p->audio_channels == 2)
temp_r += hypot(p->out_bass_r[i][0], p->out_bass_r[i][1]);
} else if (n > p->bass_cut_off_bar && n <= p->treble_cut_off_bar) {
temp_l += hypot(p->out_mid_l[i][0], p->out_mid_l[i][1]);
if (p->audio_channels == 2)
temp_r += hypot(p->out_mid_r[i][0], p->out_mid_r[i][1]);
} else if (n > p->treble_cut_off_bar) {
temp_l += hypot(p->out_treble_l[i][0], p->out_treble_l[i][1]);
if (p->audio_channels == 2)
temp_r += hypot(p->out_treble_r[i][0], p->out_treble_r[i][1]);
}
}
// getting average multiply with eq
temp_l /= p->FFTbuffer_upper_cut_off[n] - p->FFTbuffer_lower_cut_off[n] + 1;
temp_l *= p->eq[n];
cava_out[n] = temp_l;
if (p->audio_channels == 2) {
temp_r /= p->FFTbuffer_upper_cut_off[n] - p->FFTbuffer_lower_cut_off[n] + 1;
temp_r *= p->eq[n];
cava_out[n + p->number_of_bars] = temp_r;
}
}
// applying sens or getting max value
if (p->autosens) {
for (int n = 0; n < p->number_of_bars * p->audio_channels; n++) {
cava_out[n] *= p->sens;
}
}
// process [smoothing]
int overshoot = 0;
double gravity_mod = pow((60 / p->framerate), 2.5) * 1.54 / p->noise_reduction;
if (gravity_mod < 1)
gravity_mod = 1;
for (int n = 0; n < p->number_of_bars * p->audio_channels; n++) {
// process [smoothing]: falloff
if (cava_out[n] < p->prev_cava_out[n] && p->noise_reduction > 0.1) {
cava_out[n] =
p->cava_peak[n] * (1.0 - (p->cava_fall[n] * p->cava_fall[n] * gravity_mod));
if (cava_out[n] < 0.0)
cava_out[n] = 0.0;
p->cava_fall[n] += 0.028;
} else {
p->cava_peak[n] = cava_out[n];
p->cava_fall[n] = 0.0;
}
p->prev_cava_out[n] = cava_out[n];
// process [smoothing]: integral
cava_out[n] = p->cava_mem[n] * p->noise_reduction + cava_out[n];
p->cava_mem[n] = cava_out[n];
if (p->autosens) {
// check if we overshoot target height
if (cava_out[n] > 1.0) {
overshoot = 1;
}
}
}
// calculating automatic sense adjustment
if (p->autosens) {
if (overshoot) {
p->sens = p->sens * 0.98;
p->sens_init = 0;
} else {
if (!silence) {
p->sens = p->sens * 1.002;
if (p->sens_init)
p->sens = p->sens * 1.1;
}
}
}
}
void cava_destroy(struct cava_plan *p) {
free(p->input_buffer);
free(p->bass_multiplier);
free(p->mid_multiplier);
free(p->treble_multiplier);
free(p->eq);
free(p->cut_off_frequency);
free(p->FFTbuffer_lower_cut_off);
free(p->FFTbuffer_upper_cut_off);
free(p->cava_fall);
free(p->cava_mem);
free(p->cava_peak);
free(p->prev_cava_out);
fftw_free(p->in_bass_l);
fftw_free(p->in_bass_l_raw);
fftw_free(p->out_bass_l);
fftw_destroy_plan(p->p_bass_l);
fftw_free(p->in_mid_l);
fftw_free(p->in_mid_l_raw);
fftw_free(p->out_mid_l);
fftw_destroy_plan(p->p_mid_l);
fftw_free(p->in_treble_l);
fftw_free(p->in_treble_l_raw);
fftw_free(p->out_treble_l);
fftw_destroy_plan(p->p_treble_l);
if (p->audio_channels == 2) {
fftw_free(p->in_bass_r);
fftw_free(p->in_bass_r_raw);
fftw_free(p->out_bass_r);
fftw_destroy_plan(p->p_bass_r);
fftw_free(p->in_mid_r);
fftw_free(p->in_mid_r_raw);
fftw_free(p->out_mid_r);
fftw_destroy_plan(p->p_mid_r);
fftw_free(p->in_treble_r);
fftw_free(p->out_treble_r);
fftw_free(p->in_treble_r_raw);
fftw_destroy_plan(p->p_treble_r);
}
}