forked from ShuLiu1993/PANet
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain_net_step.py
454 lines (387 loc) · 17 KB
/
train_net_step.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
""" Training script for steps_with_decay policy"""
import argparse
import os
import sys
import pickle
import resource
import traceback
import logging
from collections import defaultdict
import numpy as np
import yaml
import torch
from torch.autograd import Variable
import torch.nn as nn
import cv2
cv2.setNumThreads(0) # pytorch issue 1355: possible deadlock in dataloader
import _init_paths # pylint: disable=unused-import
import nn as mynn
import utils.net as net_utils
import utils.misc as misc_utils
from core.config import cfg, cfg_from_file, cfg_from_list, assert_and_infer_cfg
from datasets.roidb import combined_roidb_for_training
from roi_data.loader import RoiDataLoader, MinibatchSampler, BatchSampler, collate_minibatch
from modeling.model_builder import Generalized_RCNN
from utils.detectron_weight_helper import load_detectron_weight
from utils.logging import setup_logging
from utils.timer import Timer
from utils.training_stats import TrainingStats
# Set up logging and load config options
logger = setup_logging(__name__)
logging.getLogger('roi_data.loader').setLevel(logging.INFO)
# RuntimeError: received 0 items of ancdata. Issue: pytorch/pytorch#973
rlimit = resource.getrlimit(resource.RLIMIT_NOFILE)
resource.setrlimit(resource.RLIMIT_NOFILE, (4096, rlimit[1]))
def parse_args():
"""Parse input arguments"""
parser = argparse.ArgumentParser(description='Train a X-RCNN network')
parser.add_argument(
'--dataset', dest='dataset', required=True,
help='Dataset to use')
parser.add_argument(
'--cfg', dest='cfg_file', required=True,
help='Config file for training (and optionally testing)')
parser.add_argument(
'--set', dest='set_cfgs',
help='Set config keys. Key value sequence seperate by whitespace.'
'e.g. [key] [value] [key] [value]',
default=[], nargs='+')
parser.add_argument(
'--disp_interval',
help='Display training info every N iterations',
default=20, type=int)
parser.add_argument(
'--no_cuda', dest='cuda', help='Do not use CUDA device', action='store_false')
# Optimization
# These options has the highest prioity and can overwrite the values in config file
# or values set by set_cfgs. `None` means do not overwrite.
parser.add_argument(
'--bs', dest='batch_size',
help='Explicitly specify to overwrite the value comed from cfg_file.',
type=int)
parser.add_argument(
'--nw', dest='num_workers',
help='Explicitly specify to overwrite number of workers to load data. Defaults to 4',
type=int)
parser.add_argument(
'--iter_size',
help='Update once every iter_size steps, as in Caffe.',
default=1, type=int)
parser.add_argument(
'--o', dest='optimizer', help='Training optimizer.',
default=None)
parser.add_argument(
'--lr', help='Base learning rate.',
default=None, type=float)
parser.add_argument(
'--lr_decay_gamma',
help='Learning rate decay rate.',
default=None, type=float)
# Epoch
parser.add_argument(
'--start_step',
help='Starting step count for training epoch. 0-indexed.',
default=0, type=int)
# Resume training: requires same iterations per epoch
parser.add_argument(
'--resume',
help='resume to training on a checkpoint',
action='store_true')
parser.add_argument(
'--no_save', help='do not save anything', action='store_true')
parser.add_argument(
'--load_ckpt', help='checkpoint path to load')
parser.add_argument(
'--load_detectron', help='path to the detectron weight pickle file')
parser.add_argument(
'--use_tfboard', help='Use tensorflow tensorboard to log training info',
action='store_true')
return parser.parse_args()
def save_ckpt(output_dir, args, step, train_size, model, optimizer):
"""Save checkpoint"""
if args.no_save:
return
ckpt_dir = os.path.join(output_dir, 'ckpt')
if not os.path.exists(ckpt_dir):
os.makedirs(ckpt_dir)
save_name = os.path.join(ckpt_dir, 'model_step{}.pth'.format(step))
if isinstance(model, mynn.DataParallel):
model = model.module
model_state_dict = model.state_dict()
torch.save({
'step': step,
'train_size': train_size,
'batch_size': args.batch_size,
'model': model.state_dict(),
'optimizer': optimizer.state_dict()}, save_name)
logger.info('save model: %s', save_name)
def main():
"""Main function"""
args = parse_args()
print('Called with args:')
print(args)
if not torch.cuda.is_available():
sys.exit("Need a CUDA device to run the code.")
if args.cuda or cfg.NUM_GPUS > 0:
cfg.CUDA = True
else:
raise ValueError("Need Cuda device to run !")
if args.dataset == "coco2017":
cfg.TRAIN.DATASETS = ('coco_2017_train',)
cfg.MODEL.NUM_CLASSES = 81
elif args.dataset == "keypoints_coco2017":
cfg.TRAIN.DATASETS = ('keypoints_coco_2017_train',)
cfg.MODEL.NUM_CLASSES = 2
else:
raise ValueError("Unexpected args.dataset: {}".format(args.dataset))
cfg_from_file(args.cfg_file)
if args.set_cfgs is not None:
cfg_from_list(args.set_cfgs)
### Adaptively adjust some configs ###
original_batch_size = cfg.NUM_GPUS * cfg.TRAIN.IMS_PER_BATCH
original_ims_per_batch = cfg.TRAIN.IMS_PER_BATCH
original_num_gpus = cfg.NUM_GPUS
if args.batch_size is None:
args.batch_size = original_batch_size
cfg.NUM_GPUS = torch.cuda.device_count()
assert (args.batch_size % cfg.NUM_GPUS) == 0, \
'batch_size: %d, NUM_GPUS: %d' % (args.batch_size, cfg.NUM_GPUS)
cfg.TRAIN.IMS_PER_BATCH = args.batch_size // cfg.NUM_GPUS
effective_batch_size = args.iter_size * args.batch_size
print('effective_batch_size = batch_size * iter_size = %d * %d' % (args.batch_size, args.iter_size))
print('Adaptive config changes:')
print(' effective_batch_size: %d --> %d' % (original_batch_size, effective_batch_size))
print(' NUM_GPUS: %d --> %d' % (original_num_gpus, cfg.NUM_GPUS))
print(' IMS_PER_BATCH: %d --> %d' % (original_ims_per_batch, cfg.TRAIN.IMS_PER_BATCH))
### Adjust learning based on batch size change linearly
# For iter_size > 1, gradients are `accumulated`, so lr is scaled based
# on batch_size instead of effective_batch_size
old_base_lr = cfg.SOLVER.BASE_LR
cfg.SOLVER.BASE_LR *= args.batch_size / original_batch_size
print('Adjust BASE_LR linearly according to batch_size change:\n'
' BASE_LR: {} --> {}'.format(old_base_lr, cfg.SOLVER.BASE_LR))
### Adjust solver steps
step_scale = original_batch_size / effective_batch_size
old_solver_steps = cfg.SOLVER.STEPS
old_max_iter = cfg.SOLVER.MAX_ITER
cfg.SOLVER.STEPS = list(map(lambda x: int(x * step_scale + 0.5), cfg.SOLVER.STEPS))
cfg.SOLVER.MAX_ITER = int(cfg.SOLVER.MAX_ITER * step_scale + 0.5)
print('Adjust SOLVER.STEPS and SOLVER.MAX_ITER linearly based on effective_batch_size change:\n'
' SOLVER.STEPS: {} --> {}\n'
' SOLVER.MAX_ITER: {} --> {}'.format(old_solver_steps, cfg.SOLVER.STEPS,
old_max_iter, cfg.SOLVER.MAX_ITER))
# Scale FPN rpn_proposals collect size (post_nms_topN) in `collect` function
# of `collect_and_distribute_fpn_rpn_proposals.py`
#
# post_nms_topN = int(cfg[cfg_key].RPN_POST_NMS_TOP_N * cfg.FPN.RPN_COLLECT_SCALE + 0.5)
if cfg.FPN.FPN_ON and cfg.MODEL.FASTER_RCNN:
cfg.FPN.RPN_COLLECT_SCALE = cfg.TRAIN.IMS_PER_BATCH / original_ims_per_batch
print('Scale FPN rpn_proposals collect size directly propotional to the change of IMS_PER_BATCH:\n'
' cfg.FPN.RPN_COLLECT_SCALE: {}'.format(cfg.FPN.RPN_COLLECT_SCALE))
if args.num_workers is not None:
cfg.DATA_LOADER.NUM_THREADS = args.num_workers
print('Number of data loading threads: %d' % cfg.DATA_LOADER.NUM_THREADS)
### Overwrite some solver settings from command line arguments
if args.optimizer is not None:
cfg.SOLVER.TYPE = args.optimizer
if args.lr is not None:
cfg.SOLVER.BASE_LR = args.lr
if args.lr_decay_gamma is not None:
cfg.SOLVER.GAMMA = args.lr_decay_gamma
assert_and_infer_cfg()
timers = defaultdict(Timer)
### Dataset ###
timers['roidb'].tic()
roidb, ratio_list, ratio_index = combined_roidb_for_training(
cfg.TRAIN.DATASETS, cfg.TRAIN.PROPOSAL_FILES)
timers['roidb'].toc()
roidb_size = len(roidb)
logger.info('{:d} roidb entries'.format(roidb_size))
logger.info('Takes %.2f sec(s) to construct roidb', timers['roidb'].average_time)
# Effective training sample size for one epoch
train_size = roidb_size // args.batch_size * args.batch_size
batchSampler = BatchSampler(
sampler=MinibatchSampler(ratio_list, ratio_index),
batch_size=args.batch_size,
drop_last=True
)
dataset = RoiDataLoader(
roidb,
cfg.MODEL.NUM_CLASSES,
training=True)
dataloader = torch.utils.data.DataLoader(
dataset,
batch_sampler=batchSampler,
num_workers=cfg.DATA_LOADER.NUM_THREADS,
collate_fn=collate_minibatch)
dataiterator = iter(dataloader)
### Model ###
maskRCNN = Generalized_RCNN()
if cfg.CUDA:
maskRCNN.cuda()
### Optimizer ###
gn_param_nameset = set()
for name, module in maskRCNN.named_modules():
if isinstance(module, nn.GroupNorm):
gn_param_nameset.add(name+'.weight')
gn_param_nameset.add(name+'.bias')
gn_params = []
gn_param_names = []
bias_params = []
bias_param_names = []
nonbias_params = []
nonbias_param_names = []
nograd_param_names = []
for key, value in maskRCNN.named_parameters():
if value.requires_grad:
if 'bias' in key:
bias_params.append(value)
bias_param_names.append(key)
elif key in gn_param_nameset:
gn_params.append(value)
gn_param_names.append(key)
else:
nonbias_params.append(value)
nonbias_param_names.append(key)
else:
nograd_param_names.append(key)
assert (gn_param_nameset - set(nograd_param_names) - set(bias_param_names)) == set(gn_param_names)
# Learning rate of 0 is a dummy value to be set properly at the start of training
params = [
{'params': nonbias_params,
'lr': 0,
'weight_decay': cfg.SOLVER.WEIGHT_DECAY},
{'params': bias_params,
'lr': 0 * (cfg.SOLVER.BIAS_DOUBLE_LR + 1),
'weight_decay': cfg.SOLVER.WEIGHT_DECAY if cfg.SOLVER.BIAS_WEIGHT_DECAY else 0},
{'params': gn_params,
'lr': 0,
'weight_decay': cfg.SOLVER.WEIGHT_DECAY_GN}
]
# names of paramerters for each paramter
param_names = [nonbias_param_names, bias_param_names, gn_param_names]
if cfg.SOLVER.TYPE == "SGD":
optimizer = torch.optim.SGD(params, momentum=cfg.SOLVER.MOMENTUM)
elif cfg.SOLVER.TYPE == "Adam":
optimizer = torch.optim.Adam(params)
### Load checkpoint
if args.load_ckpt:
load_name = args.load_ckpt
logging.info("loading checkpoint %s", load_name)
checkpoint = torch.load(load_name, map_location=lambda storage, loc: storage)
net_utils.load_ckpt(maskRCNN, checkpoint['model'])
if args.resume:
args.start_step = checkpoint['step'] + 1
if 'train_size' in checkpoint: # For backward compatibility
if checkpoint['train_size'] != train_size:
print('train_size value: %d different from the one in checkpoint: %d'
% (train_size, checkpoint['train_size']))
# reorder the params in optimizer checkpoint's params_groups if needed
# misc_utils.ensure_optimizer_ckpt_params_order(param_names, checkpoint)
# There is a bug in optimizer.load_state_dict on Pytorch 0.3.1.
# However it's fixed on master.
optimizer.load_state_dict(checkpoint['optimizer'])
# misc_utils.load_optimizer_state_dict(optimizer, checkpoint['optimizer'])
del checkpoint
torch.cuda.empty_cache()
if args.load_detectron: #TODO resume for detectron weights (load sgd momentum values)
logging.info("loading Detectron weights %s", args.load_detectron)
load_detectron_weight(maskRCNN, args.load_detectron)
lr = optimizer.param_groups[0]['lr'] # lr of non-bias parameters, for commmand line outputs.
maskRCNN = mynn.DataParallel(maskRCNN, cpu_keywords=['im_info', 'roidb'],
minibatch=True)
### Training Setups ###
args.run_name = misc_utils.get_run_name() + '_step'
output_dir = misc_utils.get_output_dir(args, args.run_name)
args.cfg_filename = os.path.basename(args.cfg_file)
if not args.no_save:
if not os.path.exists(output_dir):
os.makedirs(output_dir)
blob = {'cfg': yaml.dump(cfg), 'args': args}
with open(os.path.join(output_dir, 'config_and_args.pkl'), 'wb') as f:
pickle.dump(blob, f, pickle.HIGHEST_PROTOCOL)
if args.use_tfboard:
from tensorboardX import SummaryWriter
# Set the Tensorboard logger
tblogger = SummaryWriter(output_dir)
### Training Loop ###
maskRCNN.train()
CHECKPOINT_PERIOD = int(cfg.TRAIN.SNAPSHOT_ITERS / cfg.NUM_GPUS)
# Set index for decay steps
decay_steps_ind = None
for i in range(1, len(cfg.SOLVER.STEPS)):
if cfg.SOLVER.STEPS[i] >= args.start_step:
decay_steps_ind = i
break
if decay_steps_ind is None:
decay_steps_ind = len(cfg.SOLVER.STEPS)
training_stats = TrainingStats(
args,
args.disp_interval,
tblogger if args.use_tfboard and not args.no_save else None)
try:
logger.info('Training starts !')
step = args.start_step
for step in range(args.start_step, cfg.SOLVER.MAX_ITER):
# Warm up
if step < cfg.SOLVER.WARM_UP_ITERS:
method = cfg.SOLVER.WARM_UP_METHOD
if method == 'constant':
warmup_factor = cfg.SOLVER.WARM_UP_FACTOR
elif method == 'linear':
alpha = step / cfg.SOLVER.WARM_UP_ITERS
warmup_factor = cfg.SOLVER.WARM_UP_FACTOR * (1 - alpha) + alpha
else:
raise KeyError('Unknown SOLVER.WARM_UP_METHOD: {}'.format(method))
lr_new = cfg.SOLVER.BASE_LR * warmup_factor
net_utils.update_learning_rate(optimizer, lr, lr_new)
lr = optimizer.param_groups[0]['lr']
assert lr == lr_new
elif step == cfg.SOLVER.WARM_UP_ITERS:
net_utils.update_learning_rate(optimizer, lr, cfg.SOLVER.BASE_LR)
lr = optimizer.param_groups[0]['lr']
assert lr == cfg.SOLVER.BASE_LR
# Learning rate decay
if decay_steps_ind < len(cfg.SOLVER.STEPS) and \
step == cfg.SOLVER.STEPS[decay_steps_ind]:
logger.info('Decay the learning on step %d', step)
lr_new = lr * cfg.SOLVER.GAMMA
net_utils.update_learning_rate(optimizer, lr, lr_new)
lr = optimizer.param_groups[0]['lr']
assert lr == lr_new
decay_steps_ind += 1
training_stats.IterTic()
optimizer.zero_grad()
for inner_iter in range(args.iter_size):
try:
input_data = next(dataiterator)
except StopIteration:
dataiterator = iter(dataloader)
input_data = next(dataiterator)
for key in input_data:
if key != 'roidb': # roidb is a list of ndarrays with inconsistent length
input_data[key] = list(map(Variable, input_data[key]))
net_outputs = maskRCNN(**input_data)
training_stats.UpdateIterStats(net_outputs, inner_iter)
loss = net_outputs['total_loss']
loss.backward()
optimizer.step()
training_stats.IterToc()
training_stats.LogIterStats(step, lr)
if (step+1) % CHECKPOINT_PERIOD == 0:
save_ckpt(output_dir, args, step, train_size, maskRCNN, optimizer)
# ---- Training ends ----
# Save last checkpoint
save_ckpt(output_dir, args, step, train_size, maskRCNN, optimizer)
except (RuntimeError, KeyboardInterrupt):
del dataiterator
logger.info('Save ckpt on exception ...')
save_ckpt(output_dir, args, step, train_size, maskRCNN, optimizer)
logger.info('Save ckpt done.')
stack_trace = traceback.format_exc()
print(stack_trace)
finally:
if args.use_tfboard and not args.no_save:
tblogger.close()
if __name__ == '__main__':
main()