forked from yangxuntu/SGAE
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathAttModel_mem4_new.py
1023 lines (864 loc) · 47.2 KB
/
AttModel_mem4_new.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
# This file contains Att2in2, AdaAtt, AdaAttMO, TopDown model
# AdaAtt is from Knowing When to Look: Adaptive Attention via A Visual Sentinel for Image Captioning
# https://arxiv.org/abs/1612.01887
# AdaAttMO is a modified version with maxout lstm
# Att2in is from Self-critical Sequence Training for Image Captioning
# https://arxiv.org/abs/1612.00563
# In this file we only have Att2in2, which is a slightly different version of att2in,
# in which the img feature embedding and word embedding is the same as what in adaatt.
# TopDown is from Bottom-Up and Top-Down Attention for Image Captioning and VQA
# https://arxiv.org/abs/1707.07998
# However, it may not be identical to the author's architecture.
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import torch
import torch.nn as nn
import torch.nn.functional as F
import numpy as np
import os
import misc.utils as utils
from torch.nn.utils.rnn import PackedSequence, pack_padded_sequence, pad_packed_sequence
from .CaptionModel_mem import CaptionModel
def sort_pack_padded_sequence(input, lengths):
sorted_lengths, indices = torch.sort(lengths, descending=True)
tmp = pack_padded_sequence(input[indices], sorted_lengths, batch_first=True)
inv_ix = indices.clone()
inv_ix[indices] = torch.arange(0,len(indices)).type_as(inv_ix)
return tmp, inv_ix
def pad_unsort_packed_sequence(input, inv_ix):
tmp, _ = pad_packed_sequence(input, batch_first=True)
tmp = tmp[inv_ix]
return tmp
def pack_wrapper(module, att_feats, att_masks):
if att_masks is not None:
packed, inv_ix = sort_pack_padded_sequence(att_feats, att_masks.data.long().sum(1))
return pad_unsort_packed_sequence(PackedSequence(module(packed[0]), packed[1]), inv_ix)
else:
return module(att_feats)
class AttModel_mem4_new(CaptionModel):
def __init__(self, opt):
super(AttModel_mem4_new, self).__init__()
self.vocab_size = opt.vocab_size
self.input_encoding_size = opt.input_encoding_size
#self.rnn_type = opt.rnn_type
self.rnn_size = opt.rnn_size
self.num_layers = opt.num_layers
self.drop_prob_lm = opt.drop_prob_lm
self.seq_length = opt.seq_length
self.fc_feat_size = opt.fc_feat_size
self.att_feat_size = opt.att_feat_size
self.att_hid_size = opt.att_hid_size
self.seq_per_img = opt.seq_per_img
self.use_rela = getattr(opt, 'use_rela', 0)
self.rela_dict_len = getattr(opt, 'rela_dict_size', 0)
self.use_attr_info = getattr(opt, 'use_attr_info', 1)
self.ssg_core = TopDownCore_mem(opt)
self.rela_core = TopDownCore_rela(opt)
self.img2sg = imge2sene_fc(opt)
self.memory_index = getattr(opt, 'memory_index', 'c')
self.memory_size = getattr(opt, 'memory_size', 5000)
self.memory_cell_path = getattr(opt, 'memory_cell_path', '0')
self.index_eval = getattr(opt, 'index_eval', 0)
self.use_bn = getattr(opt, 'use_bn', 0)
self.ss_prob = 0.0 # Schedule sampling probability
self.embed = nn.Sequential(nn.Embedding(self.vocab_size + 1, self.input_encoding_size),
nn.ReLU(inplace=True),
nn.Dropout(self.drop_prob_lm))
self.embed2vis = nn.Sequential(nn.Linear(self.input_encoding_size, self.rnn_size),
nn.ReLU(inplace=True),
nn.Dropout(self.drop_prob_lm))
self.fc_embed = nn.Sequential(nn.Linear(self.fc_feat_size, self.rnn_size),
nn.ReLU(inplace=True),
nn.Dropout(self.drop_prob_lm))
self.att_embed = nn.Sequential(*(
((nn.BatchNorm1d(self.att_feat_size),) if self.use_bn else ())+
(nn.Linear(self.att_feat_size, self.rnn_size),
nn.ReLU(inplace=True),
nn.Dropout(self.drop_prob_lm))+
((nn.BatchNorm1d(self.rnn_size),) if self.use_bn==2 else ())))
self.rela_embed = nn.Sequential(nn.Embedding(self.rela_dict_len, self.input_encoding_size),
nn.ReLU(inplace=True),
nn.Dropout(self.drop_prob_lm))
self.rela_sbj_rela_fc = nn.Sequential(nn.Linear(self.rnn_size*3, self.rnn_size),
nn.ReLU(inplace=True),
nn.Dropout(self.drop_prob_lm))
self.rela_obj_rela_fc = nn.Sequential(nn.Linear(self.rnn_size*3, self.rnn_size),
nn.ReLU(inplace=True),
nn.Dropout(self.drop_prob_lm))
self.rela_rela_fc = nn.Sequential(nn.Linear(self.rnn_size*3, self.rnn_size),
nn.ReLU(inplace=True),
nn.Dropout(self.drop_prob_lm))
self.rela_attr_fc = nn.Sequential(nn.Linear(self.rnn_size*2, self.rnn_size),
nn.ReLU(inplace=True),
nn.Dropout(self.drop_prob_lm))
self.ssg_sbj_rela_fc = nn.Sequential(nn.Linear(self.input_encoding_size * 3, self.rnn_size),
nn.ReLU(inplace=True),
nn.Dropout(self.drop_prob_lm))
self.ssg_obj_rela_fc = nn.Sequential(nn.Linear(self.input_encoding_size*3, self.rnn_size),
nn.ReLU(inplace=True),
nn.Dropout(self.drop_prob_lm))
self.ssg_obj_obj_fc = nn.Sequential(nn.Linear(self.input_encoding_size, self.rnn_size),
nn.ReLU(inplace=True),
nn.Dropout(self.drop_prob_lm))
self.ssg_obj_attr_fc = nn.Sequential(nn.Linear(self.input_encoding_size*2, self.rnn_size),
nn.ReLU(inplace=True),
nn.Dropout(self.drop_prob_lm))
self.ssg_rela_fc = nn.Sequential(nn.Linear(self.input_encoding_size*3, self.rnn_size),
nn.ReLU(inplace=True),
nn.Dropout(self.drop_prob_lm))
self.ssg_attr_fc = nn.Sequential(nn.Linear(self.input_encoding_size*2, self.rnn_size),
nn.ReLU(inplace=True),
nn.Dropout(self.drop_prob_lm))
self.logit_layers = getattr(opt, 'logit_layers', 1)
if self.logit_layers == 1:
self.logit = nn.Linear(self.rnn_size, self.vocab_size + 1)
else:
self.logit = [[nn.Linear(self.rnn_size, self.rnn_size), nn.ReLU(), nn.Dropout(0.5)] for _ in
range(opt.logit_layers - 1)]
self.logit = nn.Sequential(
*(reduce(lambda x, y: x + y, self.logit) + [nn.Linear(self.rnn_size, self.vocab_size + 1)]))
self.rela_ctx2att = nn.Linear(self.rnn_size, self.att_hid_size)
self.ssg_ctx2att = nn.Linear(self.rnn_size, self.att_hid_size)
if os.path.isfile(self.memory_cell_path):
print('load memory_cell from {0}'.format(self.memory_cell_path))
memory_init = np.load(self.memory_cell_path)['memory_cell'][()]
else:
print('create a new memory_cell')
memory_init = np.random.rand(self.memory_size, self.rnn_size) / 100
memory_init = np.float32(memory_init)
self.memory_cell = torch.from_numpy(memory_init).cuda().requires_grad_()
#self.rela_mem = Memory_cell2(opt)
self.ssg_mem = Memory_cell2(opt)
def init_hidden(self, bsz):
weight = next(self.parameters())
return (weight.new_zeros(self.num_layers, bsz, self.rnn_size),
weight.new_zeros(self.num_layers, bsz, self.rnn_size))
def clip_att(self, att_feats, att_masks):
# Clip the length of att_masks and att_feats to the maximum length
if att_masks is not None:
max_len = att_masks.data.long().sum(1).max()
att_feats = att_feats[:, :max_len].contiguous()
att_masks = att_masks[:, :max_len].contiguous()
return att_feats, att_masks
def _prepare_feature(self, fc_feats, att_feats, att_masks):
# embed fc and att feats
fc_feats = self.fc_embed(fc_feats)
att_feats = pack_wrapper(self.att_embed, att_feats, att_masks)
return fc_feats, att_feats
def rela_graph_gfc(self, rela_data):
"""
:param att_feats: roi features of each bounding box, [N_img*5, N_att_max, rnn_size]
:param rela_feats: the embeddings of relationship, [N_img*5, N_rela_max, rnn_size]
:param rela_matrix: relationship matrix, [N_img*5, N_rela_max, 3], N_img
is the batch size, N_rela_max is the maximum number
of relationship in rela_matrix.
:param rela_masks: relationship masks, [N_img*5, N_rela_max].
For each row, the sum of that row is the total number
of realtionship.
:param att_masks: attention masks, [N_img*5, N_att_max].
For each row, the sum of that row is the total number
of roi poolings.
:param attr_matrix: attribute matrix,[N_img*5, N_attr_max, N_attr_each_max]
N_img is the batch size, N_attr_max is the maximum number
of attributes of one mini-batch, N_attr_each_max is the
maximum number of attributes of each objects in that mini-batch
:param attr_masks: attribute masks, [N_img*5, N_attr_max, N_attr_each_max]
the sum of attr_masks[img_id*5,:,0] is the number of objects
which own attributes, the sum of attr_masks[img_id*5, obj_id, :]
is the number of attribute that object has
:return: att_feats_new: new roi features
rela_feats_new: new relationship embeddings
attr_feats_new: new attribute features
"""
att_feats = rela_data['att_feats']
att_masks = rela_data['att_masks']
rela_matrix = rela_data['rela_matrix']
rela_feats = rela_data['rela_feats']
rela_masks = rela_data['rela_masks']
attr_matrix = rela_data['attr_matrix']
attr_masks = rela_data['attr_masks']
att_feats_size = att_feats.size()
attr_masks_size = attr_masks.size()
N_att = att_feats_size[0]
if self.index_eval == 1:
seq_per_img = 1
else:
seq_per_img = self.seq_per_img
N_img = N_att / seq_per_img
att_feats_new = att_feats.clone()
rela_feats_new = rela_feats.clone()
attr_feats_new = torch.zeros([attr_masks_size[0], attr_masks_size[1], self.rnn_size]).cuda()
for img_id in range(int(N_img)):
N_rela = torch.sum(rela_masks[img_id * seq_per_img, :])
N_box = torch.sum(att_masks[img_id * seq_per_img, :])
N_rela = int(N_rela)
N_box = int(N_box)
box_num = np.ones([N_box,])
rela_num = np.ones([N_rela,])
for i in range(N_rela):
sub_id = rela_matrix[img_id * seq_per_img, i, 0]
sub_id = int(sub_id)
box_num[sub_id] += 1.0
obj_id = rela_matrix[img_id * seq_per_img, i, 1]
obj_id = int(obj_id)
box_num[obj_id] += 1.0
rela_id = i
rela_num[rela_id] += 1.0
sub_feat_use = att_feats[img_id * seq_per_img, sub_id, :]
obj_feat_use = att_feats[img_id * seq_per_img, obj_id, :]
rela_feat_use = rela_feats[img_id * seq_per_img, rela_id, :]
att_feats_new[img_id * seq_per_img: (img_id + 1) * seq_per_img, sub_id, :] += \
self.rela_sbj_rela_fc(torch.cat((sub_feat_use, obj_feat_use, rela_feat_use)))
att_feats_new[img_id * seq_per_img: (img_id + 1) * seq_per_img, obj_id, :] += \
self.rela_obj_rela_fc(torch.cat((sub_feat_use, obj_feat_use, rela_feat_use)))
rela_feats_new[img_id * seq_per_img: (img_id + 1) * seq_per_img, rela_id, :] += \
self.rela_rela_fc(torch.cat((sub_feat_use, obj_feat_use, rela_feat_use)))
if self.use_attr_info == 1:
N_obj_attr = torch.sum(attr_masks[img_id * seq_per_img, :, 0])
N_obj_attr = int(N_obj_attr)
for i in range(N_obj_attr):
attr_obj_id = int(attr_matrix[img_id * seq_per_img, i, 0])
obj_feat_use = att_feats[img_id * seq_per_img, int(attr_obj_id), :]
N_attr_each = torch.sum(attr_masks[img_id * seq_per_img, i, :])
for j in range(N_attr_each-1):
attr_index = attr_matrix[img_id * seq_per_img, i, j+1].cuda().long()
attr_feat_use = self.rela_embed(attr_index)
attr_feat_use = self.embed2vis(attr_feat_use)
attr_feats_new[img_id * seq_per_img:(img_id+1) * seq_per_img, i, :] += \
self.rela_attr_fc( torch.cat((attr_feat_use, obj_feat_use)) )
attr_feats_new[img_id * seq_per_img:(img_id+1) * seq_per_img, i, :] = \
attr_feats_new[img_id * seq_per_img:(img_id+1) * seq_per_img, i, :]/(float(N_attr_each)-1)
for i in range(N_box):
att_feats_new[img_id * seq_per_img: (img_id + 1) * seq_per_img, i] = \
att_feats_new[img_id * seq_per_img: (img_id + 1) * seq_per_img, i]/box_num[i]
for i in range(N_rela):
rela_feats_new[img_id * seq_per_img: (img_id + 1) * seq_per_img, i, :] = \
rela_feats_new[img_id * seq_per_img: (img_id + 1) * seq_per_img, i, :]/rela_num[i]
rela_data['att_feats'] = att_feats_new
rela_data['rela_feats'] = rela_feats_new
if self.use_attr_info == 1:
rela_data['attr_feats'] = attr_feats_new
return rela_data
def prepare_rela_feats(self, rela_data):
"""
Change relationship index (one-hot) to relationship features, or change relationship
probability to relationship features.
:param rela_matrix:
:param rela_masks:
:return: rela_features, [N_img*5, N_rela_max, rnn_size]
"""
rela_matrix = rela_data['rela_matrix']
rela_masks = rela_data['rela_masks']
rela_feats_size = rela_matrix.size()
N_att = rela_feats_size[0]
if self.index_eval == 1:
seq_per_img = 1
else:
seq_per_img = self.seq_per_img
N_img = N_att/seq_per_img
rela_feats = torch.zeros([rela_feats_size[0], rela_feats_size[1], self.rnn_size]).cuda()
for img_id in range(int(N_img)):
N_rela = torch.sum(rela_masks[img_id * seq_per_img, :])
N_rela = int(N_rela)
if N_rela>0:
rela_index = rela_matrix[img_id*seq_per_img,:N_rela,2].cuda().long()
rela_feats_temp = self.rela_embed(rela_index)
rela_feats_temp = self.embed2vis(rela_feats_temp)
rela_feats[img_id*seq_per_img:(img_id+1)*seq_per_img,:N_rela,:] = rela_feats_temp
rela_data['rela_feats'] = rela_feats
return rela_data
def merge_rela_att(self, rela_data):
"""
merge attention features (roi features) and relationship features together
:param att_feats: [N_att, N_att_max, rnn_size]
:param att_masks: [N_att, N_att_max]
:param rela_feats: [N_att, N_rela_max, rnn_size]
:param rela_masks: [N_att, N_rela_max]
:return: att_feats_new: [N_att, N_att_new_max, rnn_size]
att_masks_new: [N_att, N_att_new_max]
"""
att_feats = rela_data['att_feats']
att_masks = rela_data['att_masks']
rela_feats = rela_data['rela_feats']
rela_masks = rela_data['rela_masks']
if self.use_attr_info == 1:
attr_feats = rela_data['attr_feats']
attr_masks = rela_data['attr_masks']
att_feats_size = att_feats.size()
N_att = att_feats_size[0]
if self.index_eval == 1:
seq_per_img = 1
else:
seq_per_img = self.seq_per_img
N_img = N_att/seq_per_img
N_att_new_max = -1
for img_id in range(int(N_img)):
if self.use_attr_info != 0:
N_att_new_max = \
max(N_att_new_max,torch.sum(rela_masks[img_id * seq_per_img, :]) +
torch.sum(att_masks[img_id * seq_per_img, :]) + torch.sum(attr_masks[img_id * seq_per_img,:,0]))
else:
N_att_new_max = \
max(N_att_new_max, torch.sum(rela_masks[img_id * seq_per_img, :]) +
torch.sum(att_masks[img_id * seq_per_img, :]))
att_masks_new = torch.zeros([N_att, int(N_att_new_max)]).cuda()
att_feats_new = torch.zeros([N_att, int(N_att_new_max), self.rnn_size]).cuda()
for img_id in range(int(N_img)):
N_rela = int(torch.sum(rela_masks[img_id * seq_per_img, :]))
N_box = int(torch.sum(att_masks[img_id * seq_per_img, :]))
if self.use_attr_info == 1:
N_attr = int(torch.sum(attr_masks[img_id * seq_per_img,:,0]))
else:
N_attr = 0
att_feats_new[img_id * seq_per_img:(img_id + 1) * seq_per_img, 0:N_box, :] = \
att_feats[img_id * seq_per_img:(img_id + 1) * seq_per_img, 0:N_box, :]
if N_rela > 0:
att_feats_new[img_id * seq_per_img:(img_id + 1) * seq_per_img, N_box:N_box + N_rela, :] = \
rela_feats[img_id * seq_per_img:(img_id + 1) * seq_per_img, 0:N_rela, :]
if N_attr > 0:
att_feats_new[img_id * seq_per_img:(img_id + 1) * seq_per_img, N_box + N_rela: N_box + N_rela + N_attr, :] = \
attr_feats[img_id * seq_per_img:(img_id + 1) * seq_per_img, 0:N_attr, :]
att_masks_new[img_id * seq_per_img:(img_id + 1) * seq_per_img, 0:N_box] = 1
if N_rela > 0:
att_masks_new[img_id * seq_per_img:(img_id + 1) * seq_per_img, N_box:N_box + N_rela] = 1
if N_attr > 0:
att_masks_new[img_id * seq_per_img:(img_id + 1) * seq_per_img, N_box + N_rela:N_box + N_rela + N_attr] = 1
rela_data['att_feats_new'] = att_feats_new
rela_data['att_masks_new'] = att_masks_new
return rela_data
def ssg_graph_gfc(self, ssg_data):
"""
use sentence scene graph's graph network to embed feats,
:param ssg_data: one dict which contains the following data:
ssg_data['ssg_rela_matrix']: relationship matrix for ssg data,
[N_att, N_rela_max, 3] array
ssg_data['ssg_rela_masks']: relationship masks for ssg data,
[N_att, N_rela_max]
ssg_data['ssg_obj']: obj index for ssg data, [N_att, N_obj_max]
ssg_data['ssg_obj_masks']: obj masks, [N_att, N_obj_max]
ssg_data['ssg_attr']: attribute indexes, [N_att, N_obj_max, N_attr_max]
ssg_data['ssg_attr_masks']: attribute masks, [N_att, N_obj_max, N_attr_max]
:return: ssg_data_new one dict which contains the following data:
ssg_data_new['ssg_rela_feats']: relationship embeddings, [N_att, N_rela_max, rnn_size]
ssg_data_new['ssg_rela_masks']: equal to ssg_data['ssg_rela_masks']
ssg_data_new['ssg_obj_feats']: obj embeddings, [N_att, N_obj_max, rnn_size]
ssg_data_new['ssg_obj_masks']: equal to ssg_data['ssg_obj_masks']
ssg_data_new['ssg_attr_feats']: attributes embeddings, [N_att, N_attr_max, rnn_size]
ssg_data_new['ssg_attr_masks']: equal to ssg_data['ssg_attr_masks']
"""
ssg_data_new = {}
ssg_data_new['ssg_rela_masks'] = ssg_data['ssg_rela_masks']
ssg_data_new['ssg_obj_masks'] = ssg_data['ssg_obj_masks']
ssg_data_new['ssg_attr_masks'] = ssg_data['ssg_attr_masks']
ssg_obj = ssg_data['ssg_obj']
ssg_obj_masks = ssg_data['ssg_obj_masks']
ssg_attr = ssg_data['ssg_attr']
ssg_attr_masks = ssg_data['ssg_attr_masks']
ssg_rela_matrix = ssg_data['ssg_rela_matrix']
ssg_rela_masks = ssg_data['ssg_rela_masks']
ssg_obj_feats = torch.zeros([ssg_obj.size()[0], ssg_obj.size()[1], self.rnn_size]).cuda()
ssg_rela_feats = torch.zeros([ssg_rela_matrix.size()[0], ssg_rela_matrix.size()[1], self.rnn_size]).cuda()
ssg_attr_feats = torch.zeros([ssg_attr.size()[0], ssg_attr.size()[1], self.rnn_size]).cuda()
ssg_attr_masks_new = torch.zeros(ssg_obj.size()).cuda()
ssg_obj_size = ssg_obj.size()
N_att = ssg_obj_size[0]
if self.index_eval == 1:
seq_per_img = 1
else:
seq_per_img = self.seq_per_img
N_img = int(N_att/seq_per_img)
for img_id in range(N_img):
N_obj = int(torch.sum(ssg_obj_masks[img_id*seq_per_img,:]))
if N_obj == 0:
continue
obj_feats_ori = self.embed(ssg_obj[img_id*seq_per_img,:N_obj].cuda().long())
obj_feats_temp = self.ssg_obj_obj_fc(obj_feats_ori)
obj_num = np.ones([N_obj,])
N_rela = int(torch.sum(ssg_rela_masks[img_id*seq_per_img,:]))
rela_feats_temp = torch.zeros([N_rela, self.rnn_size])
for rela_id in range(N_rela):
sbj_id = int(ssg_rela_matrix[img_id * seq_per_img, rela_id, 0])
obj_id = int(ssg_rela_matrix[img_id * seq_per_img, rela_id, 1])
rela_index = ssg_rela_matrix[img_id * seq_per_img, rela_id, 2]
sbj_feat = obj_feats_ori[sbj_id]
obj_feat = obj_feats_ori[obj_id]
rela_feat = self.embed(rela_index.cuda().long())
obj_feats_temp[sbj_id] = obj_feats_temp[sbj_id] + self.ssg_sbj_rela_fc(torch.cat((sbj_feat, obj_feat, rela_feat)))
obj_num[sbj_id] = obj_num[sbj_id] + 1.0
obj_feats_temp[obj_id] = obj_feats_temp[obj_id] + self.ssg_obj_rela_fc(torch.cat((sbj_feat, obj_feat, rela_feat)))
obj_num[obj_id] = obj_num[obj_id] + 1.0
rela_feats_temp[rela_id] = self.ssg_rela_fc(torch.cat((sbj_feat, obj_feat, rela_feat)))
for obj_id in range(N_obj):
obj_feats_temp[obj_id] = obj_feats_temp[obj_id]/obj_num[obj_id]
attr_feats_temp = torch.zeros([N_obj, self.rnn_size]).cuda()
obj_attr_ids = 0
for obj_id in range(N_obj):
N_attr = int(torch.sum(ssg_attr_masks[img_id*seq_per_img, obj_id,:]))
if N_attr != 0:
attr_feat_ori = self.embed(ssg_attr[img_id * seq_per_img, obj_id, :N_attr].cuda().long())
for attr_id in range(N_attr):
attr_feats_temp[obj_attr_ids] = attr_feats_temp[obj_attr_ids] +\
self.ssg_attr_fc(torch.cat((obj_feats_ori[obj_id], attr_feat_ori[attr_id])))
attr_feats_temp[obj_attr_ids] = attr_feats_temp[obj_attr_ids]/(N_attr + 0.0)
obj_attr_ids += 1
N_obj_attr = obj_attr_ids
ssg_attr_masks_new[img_id*seq_per_img:(img_id+1)*seq_per_img, :N_obj_attr] = 1
ssg_obj_feats[img_id * seq_per_img: (img_id+1) * seq_per_img, :N_obj, :] = obj_feats_temp
if N_rela != 0:
ssg_rela_feats[img_id * seq_per_img: (img_id+1) * seq_per_img, :N_rela, :] = rela_feats_temp
if N_obj_attr != 0:
ssg_attr_feats[img_id * seq_per_img: (img_id+1) * seq_per_img, :N_obj_attr, :] = attr_feats_temp[:N_obj_attr]
ssg_data_new['ssg_obj_feats'] = ssg_obj_feats
ssg_data_new['ssg_rela_feats'] = ssg_rela_feats
ssg_data_new['ssg_attr_feats'] = ssg_attr_feats
ssg_data_new['ssg_attr_masks'] = ssg_attr_masks_new
return ssg_data_new
def merge_ssg_att(self, ssg_data_new):
"""
merge ssg_obj_feats, ssg_rela_feats, ssg_attr_feats together
:param ssg_data_new:
:return: att_feats: [N_att, N_att_max, rnn_size]
att_masks: [N_att, N_att_max]
"""
ssg_obj_feats = ssg_data_new['ssg_obj_feats']
ssg_rela_feats = ssg_data_new['ssg_rela_feats']
ssg_attr_feats = ssg_data_new['ssg_attr_feats']
ssg_rela_masks = ssg_data_new['ssg_rela_masks']
ssg_obj_masks = ssg_data_new['ssg_obj_masks']
ssg_attr_masks = ssg_data_new['ssg_attr_masks']
ssg_obj_size = ssg_obj_feats.size()
N_att = ssg_obj_size[0]
if self.index_eval == 1:
seq_per_img = 1
else:
seq_per_img = self.seq_per_img
N_img = int(N_att / seq_per_img)
N_att_max = -1
for img_id in range(N_img):
N_rela = int(torch.sum(ssg_rela_masks[img_id*seq_per_img,:]))
N_obj = int(torch.sum(ssg_obj_masks[img_id*seq_per_img,:]))
N_attr = int(torch.sum(ssg_attr_masks[img_id*seq_per_img,:]))
N_att_max = max(N_att_max, N_rela + N_obj + N_attr)
att_feats = torch.zeros([N_att, N_att_max, self.rnn_size]).cuda()
att_masks = torch.zeros([N_att, N_att_max]).cuda()
for img_id in range(N_img):
N_rela = int(torch.sum(ssg_rela_masks[img_id * seq_per_img, :]))
N_obj = int(torch.sum(ssg_obj_masks[img_id * seq_per_img, :]))
N_attr = int(torch.sum(ssg_attr_masks[img_id * seq_per_img, :]))
if N_obj != 0:
att_feats[img_id * seq_per_img:(img_id + 1) * seq_per_img, :N_obj, :] = \
ssg_obj_feats[img_id * seq_per_img, :N_obj, :]
if N_rela != 0:
att_feats[img_id * seq_per_img:(img_id + 1) * seq_per_img, N_obj:N_obj+N_rela, :] = \
ssg_rela_feats[img_id * seq_per_img, :N_rela, :]
if N_attr != 0:
att_feats[img_id * seq_per_img:(img_id + 1) * seq_per_img, N_obj+N_rela:N_obj+N_attr+N_rela, :] = \
ssg_attr_feats[img_id * seq_per_img, :N_attr, :]
att_masks[img_id * seq_per_img:(img_id + 1) * seq_per_img, :N_obj+N_rela+N_attr] = 1
ssg_data_new['att_feats_new'] = att_feats
ssg_data_new['att_masks_new'] = att_masks
return ssg_data_new
def _forward(self, fc_feats, att_feats, seq, att_masks=None, rela_data=None, ssg_data=None, use_rela =1, training_mode = 0):
"""
:param fc_feats:
:param att_feats:
:param seq:
:param att_masks:
:param rela_data:
:param ssg_data:
:param training_mode: when this is 0, using sentence sg and do not use memory,
when this is 1, using sentence sg and write data into memory,
when this is 2, using image sg and read data from memory
:return:
"""
att_feats, att_masks = self.clip_att(att_feats, att_masks)
self.index_eval = 0
batch_size = fc_feats.size(0)
state = self.init_hidden(batch_size)
# outputs = []
outputs = fc_feats.new_zeros(batch_size, seq.size(1) - 1, self.vocab_size+1)
fc_feats, att_feats = self._prepare_feature(fc_feats, att_feats, att_masks)
if training_mode == 0:
ssg_data = self.ssg_graph_gfc(ssg_data)
ssg_data = self.merge_ssg_att(ssg_data)
att_feats_mem = ssg_data['att_feats_new']
att_masks = ssg_data['att_masks_new']
p_att_feats_mem = self.ssg_ctx2att(att_feats_mem)
att_feats_rela = None
p_att_feats_rela = None
if training_mode == 1:
ssg_data = self.ssg_graph_gfc(ssg_data)
ssg_data = self.merge_ssg_att(ssg_data)
att_feats_mem = ssg_data['att_feats_new']
att_feats_mem = self.ssg_mem(att_feats_mem, self.memory_cell)
att_masks = ssg_data['att_masks_new']
p_att_feats_mem = self.ssg_ctx2att(att_feats_mem)
att_feats_rela = None
p_att_feats_rela = None
if training_mode == 2:
if use_rela == 1:
rela_data['att_feats'] = att_feats
rela_data['att_masks'] = att_masks
rela_data = self.prepare_rela_feats(rela_data)
rela_data = self.rela_graph_gfc(rela_data)
rela_data = self.merge_rela_att(rela_data)
else:
rela_data['att_feats_new'] = att_feats
rela_data['att_masks_new'] = att_masks
att_feats_rela = rela_data['att_feats_new']
att_feats_mem = self.img2sg(att_feats_rela)
att_feats_mem = self.ssg_mem(att_feats_mem, self.memory_cell)
#att_feats = self.rela_mem(att_feats, self.memory_cell)
att_masks = rela_data['att_masks_new']
p_att_feats_rela = self.rela_ctx2att(att_feats_rela)
p_att_feats_mem = self.rela_ctx2att(att_feats_mem)
for i in range(seq.size(1) - 1):
if self.training and i >= 1 and self.ss_prob > 0.0: # otherwiste no need to sample
sample_prob = fc_feats.new(batch_size).uniform_(0, 1)
sample_mask = sample_prob < self.ss_prob
if sample_mask.sum() == 0:
it = seq[:, i].clone()
else:
sample_ind = sample_mask.nonzero().view(-1)
it = seq[:, i].data.clone()
prob_prev = torch.exp(outputs[:, i - 1].detach())
it.index_copy_(0, sample_ind,
torch.multinomial(prob_prev, 1).view(-1).index_select(0, sample_ind))
else:
it = seq[:, i].clone()
if i >= 1 and seq[:, i].sum() == 0:
break
output, state = self.get_logprobs_state(
it, fc_feats, att_feats_mem, p_att_feats_mem, att_feats_rela,
p_att_feats_rela, att_masks, training_mode, state)
outputs[:, i] = output
return outputs
def get_logprobs_state(self, it, fc_feats, att_feats_mem, p_att_feats_mem, att_feats_rela,
p_att_feats_rela, att_masks, training_mode, state):
# 'it' contains a word index
xt = self.embed(it)
if training_mode == 0 or training_mode == 1:
output, state = self.ssg_core(xt, fc_feats, att_feats_mem, p_att_feats_mem, state, att_masks)
elif training_mode == 2:
output, state = self.rela_core(xt, fc_feats, att_feats_mem, att_feats_rela,
p_att_feats_mem, p_att_feats_rela, state, att_masks)
logprobs = F.log_softmax(self.logit(output), dim=1)
return logprobs, state
def _sample_beam(self, fc_feats, att_feats, att_masks=None, rela_data = None, ssg_data=None, use_rela=1, training_mode=0, opt={}):
beam_size = opt.get('beam_size', 10)
batch_size = fc_feats.size(0)
fc_feats, att_feats = self._prepare_feature(fc_feats, att_feats, att_masks)
if training_mode == 0:
ssg_data = self.ssg_graph_gfc(ssg_data)
ssg_data = self.merge_ssg_att(ssg_data)
att_feats_mem = ssg_data['att_feats_new']
att_masks = ssg_data['att_masks_new']
p_att_feats_mem = self.ssg_ctx2att(att_feats_mem)
att_feats_rela = None
p_att_feats_rela = None
if training_mode == 1:
ssg_data = self.ssg_graph_gfc(ssg_data)
ssg_data = self.merge_ssg_att(ssg_data)
att_feats_mem = ssg_data['att_feats_new']
att_feats_mem = self.ssg_mem(att_feats_mem, self.memory_cell)
att_masks = ssg_data['att_masks_new']
p_att_feats_mem = self.ssg_ctx2att(att_feats_mem)
att_feats_rela = None
p_att_feats_rela = None
if training_mode == 2:
if use_rela == 1:
rela_data['att_feats'] = att_feats
rela_data['att_masks'] = att_masks
rela_data = self.prepare_rela_feats(rela_data)
rela_data = self.rela_graph_gfc(rela_data)
rela_data = self.merge_rela_att(rela_data)
else:
rela_data['att_feats_new'] = att_feats
rela_data['att_masks_new'] = att_masks
att_feats_rela = rela_data['att_feats_new']
att_feats_mem = self.img2sg(att_feats_rela)
att_feats_mem = self.ssg_mem(att_feats_mem, self.memory_cell)
#att_feats = self.rela_mem(att_feats, self.memory_cell)
att_masks = rela_data['att_masks_new']
p_att_feats_rela = self.rela_ctx2att(att_feats_rela)
p_att_feats_mem = self.rela_ctx2att(att_feats_mem)
assert beam_size <= self.vocab_size + 1, 'lets assume this for now, otherwise this corner case causes a few headaches down the road. can be dealt with in future if needed'
seq = torch.LongTensor(self.seq_length, batch_size).zero_()
seqLogprobs = torch.FloatTensor(self.seq_length, batch_size)
# lets process every image independently for now, for simplicity
self.done_beams = [[] for _ in range(batch_size)]
for k in range(batch_size):
state = self.init_hidden(beam_size)
tmp_fc_feats = fc_feats[k:k+1].expand(beam_size, fc_feats.size(1))
tmp_att_feats_mem = att_feats_mem[k:k + 1].expand(*((beam_size,) + att_feats_mem.size()[1:])).contiguous()
tmp_p_att_feats_mem = p_att_feats_mem[k:k + 1].expand(
*((beam_size,) + p_att_feats_mem.size()[1:])).contiguous()
tmp_att_masks = att_masks[k:k + 1].expand(
*((beam_size,) + att_masks.size()[1:])).contiguous() if att_masks is not None else None
if training_mode == 2:
tmp_att_feats_rela = att_feats_rela[k:k + 1].expand(
*((beam_size,) + att_feats_rela.size()[1:])).contiguous()
tmp_p_att_feats_rela = p_att_feats_rela[k:k + 1].expand(
*((beam_size,) + p_att_feats_rela.size()[1:])).contiguous()
else:
tmp_att_feats_rela = None
tmp_p_att_feats_rela = None
for t in range(1):
if t == 0: # input <bos>
it = fc_feats.new_zeros([beam_size], dtype=torch.long)
logprobs, state = self.get_logprobs_state(
it, tmp_fc_feats, tmp_att_feats_mem, tmp_p_att_feats_mem, tmp_att_feats_rela,
tmp_p_att_feats_rela, tmp_att_masks, training_mode, state)
self.done_beams[k] = self.beam_search(
state, logprobs, training_mode, tmp_fc_feats, tmp_att_feats_mem, tmp_p_att_feats_mem,
tmp_att_feats_rela, tmp_p_att_feats_rela, tmp_att_masks, opt=opt)
seq[:, k] = self.done_beams[k][0]['seq'] # the first beam has highest cumulative score
seqLogprobs[:, k] = self.done_beams[k][0]['logps']
# return the samples and their log likelihoods
return seq.transpose(0, 1), seqLogprobs.transpose(0, 1)
def _sample(self, fc_feats, att_feats, att_masks=None, rela_data=None, ssg_data=None, use_rela = 1, training_mode=0, opt={}):
att_feats, att_masks = self.clip_att(att_feats, att_masks)
sample_max = opt.get('sample_max', 1)
beam_size = opt.get('beam_size', 1)
temperature = opt.get('temperature', 1.0)
decoding_constraint = opt.get('decoding_constraint', 0)
if beam_size > 1:
return self._sample_beam(fc_feats, att_feats, att_masks, rela_data, ssg_data, use_rela, training_mode, opt)
self.index_eval = 1
batch_size = fc_feats.size(0)
state = self.init_hidden(batch_size)
fc_feats, att_feats = self._prepare_feature(fc_feats, att_feats, att_masks)
if training_mode == 0:
ssg_data = self.ssg_graph_gfc(ssg_data)
ssg_data = self.merge_ssg_att(ssg_data)
att_feats_mem = ssg_data['att_feats_new']
att_masks = ssg_data['att_masks_new']
p_att_feats_mem = self.ssg_ctx2att(att_feats_mem)
att_feats_rela = None
p_att_feats_rela = None
if training_mode == 1:
ssg_data = self.ssg_graph_gfc(ssg_data)
ssg_data = self.merge_ssg_att(ssg_data)
att_feats_mem = ssg_data['att_feats_new']
att_feats_mem = self.ssg_mem(att_feats_mem, self.memory_cell)
att_masks = ssg_data['att_masks_new']
p_att_feats_mem = self.ssg_ctx2att(att_feats_mem)
att_feats_rela = None
p_att_feats_rela = None
if training_mode == 2:
if use_rela == 1:
rela_data['att_feats'] = att_feats
rela_data['att_masks'] = att_masks
rela_data = self.prepare_rela_feats(rela_data)
rela_data = self.rela_graph_gfc(rela_data)
rela_data = self.merge_rela_att(rela_data)
else:
rela_data['att_feats_new'] = att_feats
rela_data['att_masks_new'] = att_masks
att_feats_rela = rela_data['att_feats_new']
att_feats_mem = self.img2sg(att_feats_rela)
att_feats_mem = self.ssg_mem(att_feats_mem, self.memory_cell)
#att_feats = self.rela_mem(att_feats, self.memory_cell)
att_masks = rela_data['att_masks_new']
p_att_feats_rela = self.rela_ctx2att(att_feats_rela)
p_att_feats_mem = self.rela_ctx2att(att_feats_mem)
seq = fc_feats.new_zeros((batch_size, self.seq_length), dtype=torch.long)
seqLogprobs = fc_feats.new_zeros(batch_size, self.seq_length)
for t in range(self.seq_length + 1):
if t == 0: # input <bos>
it = fc_feats.new_zeros(batch_size, dtype=torch.long)
elif sample_max:
sampleLogprobs, it = torch.max(logprobs.data, 1)
it = it.view(-1).long()
else:
if temperature == 1.0:
prob_prev = torch.exp(logprobs.data) # fetch prev distribution: shape Nx(M+1)
else:
# scale logprobs by temperature
prob_prev = torch.exp(torch.div(logprobs.data, temperature))
it = torch.multinomial(prob_prev, 1)
sampleLogprobs = logprobs.gather(1, it) # gather the logprobs at sampled positions
it = it.view(-1).long() # and flatten indices for downstream processing
if t >= 1:
# stop when all finished
if t == 1:
unfinished = it > 0
else:
unfinished = unfinished * (it > 0)
if unfinished.sum() == 0:
break
it = it * unfinished.type_as(it)
seq[:,t-1] = it
seqLogprobs[:,t-1] = sampleLogprobs.view(-1)
logprobs, state = self.get_logprobs_state(
it, fc_feats, att_feats_mem, p_att_feats_mem, att_feats_rela,
p_att_feats_rela, att_masks, training_mode, state)
if decoding_constraint and t > 0:
tmp = output.new_zeros(output.size(0), self.vocab_size + 1)
tmp.scatter_(1, seq[:,t-1].data.unsqueeze(1), float('-inf'))
logprobs = logprobs + tmp
return seq, seqLogprobs
class TopDownCore_mem(nn.Module):
def __init__(self, opt, use_maxout=False):
super(TopDownCore_mem, self).__init__()
self.drop_prob_lm = opt.drop_prob_lm
#self.att_lstm = nn.LSTMCell(opt.rnn_size * 2, opt.rnn_size)
self.att_lstm = nn.LSTMCell(opt.input_encoding_size + opt.rnn_size * 2, opt.rnn_size) # we, fc, h^2_t-1
#self.att_lstm = nn.LSTMCell(opt.input_encoding_size + opt.rnn_size, opt.rnn_size) # we, fc, h^2_t-1
self.lang_lstm = nn.LSTMCell(opt.rnn_size * 2, opt.rnn_size) # h^1_t, \hat v
self.attention = Attention(opt)
def forward(self, xt, fc_feats, att_feats, p_att_feats, state, att_masks):
prev_h = state[0][-1]
att_lstm_input = torch.cat([prev_h, fc_feats, xt], 1)
#att_lstm_input = torch.cat([prev_h, xt], 1)
#att_lstm_input = torch.cat([fc_feats, xt], 1)
# state[0][0] means the hidden state c in first lstm
# state[1][0] means the cell h in first lstm
# state[0] means hidden state and state[1] means cell, state[0][i] means
# the i-th layer's hidden state
h_att, c_att = self.att_lstm(att_lstm_input, (state[0][0], state[1][0]))
att = self.attention(h_att, att_feats, p_att_feats, att_masks)
lang_lstm_input = torch.cat([att, h_att], 1)
# lang_lstm_input = torch.cat([att, F.dropout(h_att, self.drop_prob_lm, self.training)], 1) ?????
h_lang, c_lang = self.lang_lstm(lang_lstm_input, (state[0][1], state[1][1]))
output = F.dropout(h_lang, self.drop_prob_lm, self.training)
state = (torch.stack([h_att, h_lang]), torch.stack([c_att, c_lang]))
return output, state
class TopDownCore_rela(nn.Module):
def __init__(self, opt, use_maxout=False):
super(TopDownCore_rela, self).__init__()
self.drop_prob_lm = opt.drop_prob_lm
self.att_lstm = nn.LSTMCell(opt.input_encoding_size + opt.rnn_size * 2, opt.rnn_size) # we, fc, h^2_t-1
self.lang_lstm = nn.LSTMCell(opt.rnn_size * 3, opt.rnn_size) # h^1_t, \hat v, \hat_rela
self.attention_mem = Attention(opt)
self.attention_rela = Attention(opt)
def forward(self, xt, fc_feats, att_feats_mem, att_feats_rela, p_att_feats_mem, p_att_feats_rela, state, att_masks):
prev_h = state[0][-1]
att_lstm_input = torch.cat([prev_h, fc_feats, xt], 1)
# state[0][0] means the hidden state c in first lstm
# state[1][0] means the cell h in first lstm
# state[0] means hidden state and state[1] means cell, state[0][i] means
# the i-th layer's hidden state
h_att, c_att = self.att_lstm(att_lstm_input, (state[0][0], state[1][0]))
att_mem = self.attention_mem(h_att, att_feats_mem, p_att_feats_mem, att_masks)
att_rela = self.attention_rela(h_att, att_feats_rela, p_att_feats_rela, att_masks)
lang_lstm_input = torch.cat([att_mem, att_rela, h_att], 1)
# lang_lstm_input = torch.cat([att, F.dropout(h_att, self.drop_prob_lm, self.training)], 1) ?????
h_lang, c_lang = self.lang_lstm(lang_lstm_input, (state[0][1], state[1][1]))
output = F.dropout(h_lang, self.drop_prob_lm, self.training)
state = (torch.stack([h_att, h_lang]), torch.stack([c_att, c_lang]))
return output, state
class Attention(nn.Module):
def __init__(self, opt):
super(Attention, self).__init__()
self.rnn_size = opt.rnn_size
self.att_hid_size = opt.att_hid_size
self.h2att = nn.Linear(self.rnn_size, self.att_hid_size)
self.alpha_net = nn.Linear(self.att_hid_size, 1)
def forward(self, h, att_feats, p_att_feats, att_masks=None):
# The p_att_feats here is already projected
att_size = att_feats.numel() // att_feats.size(0) // att_feats.size(-1)
att = p_att_feats.view(-1, att_size, self.att_hid_size)
att_h = self.h2att(h) # batch * att_hid_size
att_h = att_h.unsqueeze(1).expand_as(att) # batch * att_size * att_hid_size
dot = att + att_h # batch * att_size * att_hid_size
dot = F.tanh(dot) # batch * att_size * att_hid_size
dot = dot.view(-1, self.att_hid_size) # (batch * att_size) * att_hid_size
dot = self.alpha_net(dot) # (batch * att_size) * 1
dot = dot.view(-1, att_size) # batch * att_size
weight = F.softmax(dot, dim=1) # batch * att_size
if att_masks is not None:
weight = weight * att_masks.view(-1, att_size).float()
weight = weight / weight.sum(1, keepdim=True) # normalize to 1
att_feats_ = att_feats.view(-1, att_size, att_feats.size(-1)) # batch * att_size * att_feat_size
att_res = torch.bmm(weight.unsqueeze(1), att_feats_).squeeze(1) # batch * att_feat_size
return att_res
class Memory_cell(nn.Module):
def __init__(self, opt):
"""
a_i = W^T*tanh(W_h*h + W_M*m_i)
a_i: 1*1
W: V*1
W_h: V*R
h: R*1
W_M: V*R
m_i: R*1
M=[m_1,m_2,...,m_K]^T: K*R
att = softmax(a): K*1
h_out = M*att
:param opt:
"""
super(Memory_cell, self).__init__()
self.R = opt.rnn_size
self.V = opt.att_hid_size
self.W = nn.Linear(self.V,1)
self.W_h = nn.Linear(self.R, self.V)
self.W_M = nn.Linear(self.R, self.V)
def forward(self, h, M):
M_size = M.size() #K*R
h_size = h.size() #N*R
att_h = self.W_h(h) #h:N*R att_h:N*V
att_h = att_h.unsqueeze(1).expand([h_size[0],M_size[0],self.V]) #N*K*V
M_expand = M.unsqueeze(0).expand([h_size[0],M_size[0],self.R]) #N*K*R
att_M = self.W_M(M_expand) #N*K*V
dot = att_h + att_M #N*K*V
dot = F.tanh(att_M) #N*K*V
dot = dot.view(-1, self.V) #(N*K)*V
dot = self.W(dot) #N*K*1
dot = dot.view(-1, M_size[0]) #N*K
att = F.softmax(dot, dim=1) #N*K
att_max = torch.max(att,dim=1)
max_index = torch.argmax(att,dim=1)
att_res = torch.bmm(att.unsqueeze(1), M_expand) # N*1*K, N*K*R->N*1*R
att_res = att_res.squeeze(1) #N*R
return att_res
class Memory_cell2(nn.Module):
def __init__(self, opt):
"""
a_i = h^T*m_i
a_i: 1*1
h: R*1
m_i: R*1
M=[m_1,m_2,...,m_K]^T: K*R
att = softmax(a): K*1
h_out = M*att: N*R
:param opt:
"""
super(Memory_cell2, self).__init__()
self.R = opt.rnn_size
self.V = opt.att_hid_size
self.W = nn.Linear(self.V, 1)
def forward(self, h, M):
M_size = M.size() # K*R
h_size = h.size() # N*T*R
h = h.view(-1, h_size[2]) # (N*T)*R
att = torch.mm(h, torch.t(M)) #(N*T)*K
att = F.softmax(att, dim=1) #(N*T)*K
#att_sum = torch.sum(att, dim=1)
att_max = torch.max(att,dim=1)
max_index = torch.argmax(att,dim=1)
att_res = torch.mm(att, M) #(N*T)*K * K*R->(N*T)*R
att_res = att_res.view([h_size[0], h_size[1], h_size[2]])
return att_res
class LSTM_mem4_new(AttModel_mem4_new):
def __init__(self, opt):