forked from QuantConnect/Lean
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathStandardDeviationExecutionModelRegressionAlgorithm.py
65 lines (56 loc) · 3.03 KB
/
StandardDeviationExecutionModelRegressionAlgorithm.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
# QUANTCONNECT.COM - Democratizing Finance, Empowering Individuals.
# Lean Algorithmic Trading Engine v2.0. Copyright 2014 QuantConnect Corporation.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from clr import AddReference
AddReference("System")
AddReference("QuantConnect.Algorithm")
AddReference("QuantConnect.Common")
from System import *
from QuantConnect import *
from QuantConnect.Orders import *
from QuantConnect.Algorithm import *
from QuantConnect.Algorithm.Framework import *
from QuantConnect.Algorithm.Framework.Selection import *
from Alphas.RsiAlphaModel import RsiAlphaModel
from Portfolio.EqualWeightingPortfolioConstructionModel import EqualWeightingPortfolioConstructionModel
from Execution.StandardDeviationExecutionModel import StandardDeviationExecutionModel
from datetime import timedelta
### <summary>
### Regression algorithm for the StandardDeviationExecutionModel.
### This algorithm shows how the execution model works to split up orders and submit them
### only when the price is 2 standard deviations from the 60min mean (default model settings).
### </summary>
### <meta name="tag" content="using data" />
### <meta name="tag" content="using quantconnect" />
### <meta name="tag" content="trading and orders" />
class StandardDeviationExecutionModelRegressionAlgorithm(QCAlgorithmFramework):
'''Regression algorithm for the StandardDeviationExecutionModel.
This algorithm shows how the execution model works to split up orders and submit them
only when the price is 2 standard deviations from the 60min mean (default model settings).'''
def Initialize(self):
''' Initialise the data and resolution required, as well as the cash and start-end dates for your algorithm. All algorithms must initialized.'''
# Set requested data resolution
self.UniverseSettings.Resolution = Resolution.Minute
self.SetStartDate(2013,10,7)
self.SetEndDate(2013,10,11)
self.SetCash(1000000)
self.SetUniverseSelection(ManualUniverseSelectionModel([
Symbol.Create('AIG', SecurityType.Equity, Market.USA),
Symbol.Create('BAC', SecurityType.Equity, Market.USA),
Symbol.Create('IBM', SecurityType.Equity, Market.USA),
Symbol.Create('SPY', SecurityType.Equity, Market.USA)
]))
self.SetAlpha(RsiAlphaModel(14, Resolution.Hour))
self.SetPortfolioConstruction(EqualWeightingPortfolioConstructionModel())
self.SetExecution(StandardDeviationExecutionModel())
def OnOrderEvent(self, orderEvent):
self.Log(f"{self.Time}: {orderEvent}")