The Medperf CLI is a command-line-interface that provides tools for preparing datasets and executing benchmarks on such datasets.
Clone this repo
git clone https://github.com/mlcommons/medperf.git
Go to the cli
folder
cd cli
Install using pip
pip install -e .
The CLI provides the following commands:
login
: authenticates the CLI with the medperf backend servermedperf login
dataset ls
: Lists all registered datasets by the usermedperf dataset ls
dataset create
: Prepares a raw dataset for a specific benchmarkmedperf dataset create -b <BENCHMARK_UID> -d <DATA_PATH> -l <LABELS_PATH>
dataset submit
: Submits a prepared local dataset to the platform.medperf dataset submit -d <DATASET_UID>
dataset associate
: Associates a prepared dataset with a specific benchmarkmedperf associate -b <BENCHMARK_UID> -d <DATASET_UID>
run
: Alias forresult create
. Runs a specific model from a benchmark with a specified prepared datasetmedperf run -b <BENCHMARK_UID> -d <DATASET_UID> -m <MODEL_UID>
result ls
: Displays all results created by the usermedperf result ls
result create
: Runs a specific model from a benchmark with a specified prepared datasetmedperf result create -b <BENCHMARK_UID> -d <DATASET_UID> -m <MODEL_UID>
result submit
: Submits already obtained results to the platformmedperf result submit -b <BENCHMARK_UID> -d <DATASET_UID> -m <MODEL_UID>
mlcube ls
: Lists all mlcubes created by the user. Lists all mlcubes if--all
is passedmedperf mlcube ls [--all]
mlcube submit
: Submits a new mlcube to the platformmedperf mlcube submit
mlcube associate
: Associates an MLCube to a benchmarkmedperf mlcube associate -b <BENCHMARK_UID> -m <MODEL_UID>
The CLI runs MLCubes behind the scene. This cubes require a container engine like docker, and so that engine must be running before running commands like prepare
and execute