forked from confluentinc/kafka-streams-examples
-
Notifications
You must be signed in to change notification settings - Fork 0
/
EventDeduplicationLambdaIntegrationTest.java
285 lines (249 loc) · 12.9 KB
/
EventDeduplicationLambdaIntegrationTest.java
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
/*
* Copyright Confluent Inc.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package io.confluent.examples.streams;
import io.confluent.examples.streams.kafka.EmbeddedSingleNodeKafkaCluster;
import org.apache.kafka.clients.consumer.ConsumerConfig;
import org.apache.kafka.clients.producer.ProducerConfig;
import org.apache.kafka.common.serialization.ByteArrayDeserializer;
import org.apache.kafka.common.serialization.ByteArraySerializer;
import org.apache.kafka.common.serialization.Serdes;
import org.apache.kafka.common.serialization.StringDeserializer;
import org.apache.kafka.common.serialization.StringSerializer;
import org.apache.kafka.streams.KafkaStreams;
import org.apache.kafka.streams.KeyValue;
import org.apache.kafka.streams.StreamsBuilder;
import org.apache.kafka.streams.StreamsConfig;
import org.apache.kafka.streams.kstream.KStream;
import org.apache.kafka.streams.kstream.KeyValueMapper;
import org.apache.kafka.streams.kstream.Transformer;
import org.apache.kafka.streams.processor.ProcessorContext;
import org.apache.kafka.streams.state.StoreBuilder;
import org.apache.kafka.streams.state.Stores;
import org.apache.kafka.streams.state.WindowStore;
import org.apache.kafka.streams.state.WindowStoreIterator;
import org.apache.kafka.test.TestUtils;
import org.junit.BeforeClass;
import org.junit.ClassRule;
import org.junit.Test;
import java.util.Arrays;
import java.util.List;
import java.util.Properties;
import java.util.UUID;
import java.util.concurrent.TimeUnit;
import static org.assertj.core.api.Assertions.assertThat;
/**
* End-to-end integration test that demonstrates how to remove duplicate records from an input
* stream.
*
* Here, a stateful {@link org.apache.kafka.streams.kstream.Transformer} (from the Processor API)
* detects and discards duplicate input records based on an "event id" that is embedded in each
* input record. This transformer is then included in a topology defined via the DSL.
*
* In this simplified example, the values of input records represent the event ID by which
* duplicates will be detected. In practice, record values would typically be a more complex data
* structure, with perhaps one of the fields being such an event ID. De-duplication by an event ID
* is but one example of how to perform de-duplication in general. The code example below can be
* adapted to other de-duplication approaches.
*
* IMPORTANT: Kafka including its Streams API support exactly-once semantics since version 0.11.
* With this feature available, most use cases will no longer need to worry about duplicate messages
* or duplicate processing. That said, there will still be some use cases where you have your own
* business rules that define when two events are considered to be "the same" and need to be
* de-duplicated (e.g. two events having the same payload but different timestamps). The example
* below demonstrates how to implement your own business rules for event de-duplication.
*
* Note: This example uses lambda expressions and thus works with Java 8+ only.
*/
public class EventDeduplicationLambdaIntegrationTest {
@ClassRule
public static final EmbeddedSingleNodeKafkaCluster CLUSTER = new EmbeddedSingleNodeKafkaCluster();
private static String inputTopic = "inputTopic";
private static String outputTopic = "outputTopic";
private static String storeName = "eventId-store";
@BeforeClass
public static void startKafkaCluster() throws Exception {
CLUSTER.createTopic(inputTopic);
CLUSTER.createTopic(outputTopic);
}
/**
* Discards duplicate records from the input stream.
*
* Duplicate records are detected based on an event ID; in this simplified example, the record
* value is the event ID. The transformer remembers known event IDs in an associated window state
* store, which automatically purges/expires event IDs from the store after a certain amount of
* time has passed to prevent the store from growing indefinitely.
*
* Note: This code is for demonstration purposes and was not tested for production usage.
*/
private static class DeduplicationTransformer<K, V, E> implements Transformer<K, V, KeyValue<K, V>> {
private ProcessorContext context;
/**
* Key: event ID
* Value: timestamp (event-time) of the corresponding event when the event ID was seen for the
* first time
*/
private WindowStore<E, Long> eventIdStore;
private final long leftDurationMs;
private final long rightDurationMs;
private final KeyValueMapper<K, V, E> idExtractor;
/**
* @param maintainDurationPerEventInMs how long to "remember" a known event (or rather, an event
* ID), during the time of which any incoming duplicates of
* the event will be dropped, thereby de-duplicating the
* input.
* @param idExtractor extracts a unique identifier from a record by which we de-duplicate input
* records; if it returns null, the record will not be considered for
* de-duping but forwarded as-is.
*/
DeduplicationTransformer(long maintainDurationPerEventInMs, KeyValueMapper<K, V, E> idExtractor) {
if (maintainDurationPerEventInMs < 1) {
throw new IllegalArgumentException("maintain duration per event must be >= 1");
}
leftDurationMs = maintainDurationPerEventInMs / 2;
rightDurationMs = maintainDurationPerEventInMs - leftDurationMs;
this.idExtractor = idExtractor;
}
@Override
@SuppressWarnings("unchecked")
public void init(final ProcessorContext context) {
this.context = context;
eventIdStore = (WindowStore<E, Long>) context.getStateStore(storeName);
}
public KeyValue<K, V> transform(final K key, final V value) {
E eventId = idExtractor.apply(key, value);
if (eventId == null) {
return KeyValue.pair(key, value);
} else {
KeyValue<K, V> output;
if (isDuplicate(eventId)) {
output = null;
updateTimestampOfExistingEventToPreventExpiry(eventId, context.timestamp());
} else {
output = KeyValue.pair(key, value);
rememberNewEvent(eventId, context.timestamp());
}
return output;
}
}
private boolean isDuplicate(final E eventId) {
long eventTime = context.timestamp();
WindowStoreIterator<Long> timeIterator = eventIdStore.fetch(
eventId,
eventTime - leftDurationMs,
eventTime + rightDurationMs);
boolean isDuplicate = timeIterator.hasNext();
timeIterator.close();
return isDuplicate;
}
private void updateTimestampOfExistingEventToPreventExpiry(final E eventId, long newTimestamp) {
eventIdStore.put(eventId, newTimestamp, newTimestamp);
}
private void rememberNewEvent(final E eventId, long timestamp) {
eventIdStore.put(eventId, timestamp, timestamp);
}
@Override
public KeyValue<K, V> punctuate(final long timestamp) {
// our windowStore segments are closed automatically
return null;
}
@Override
public void close() {
// Note: The store should NOT be closed manually here via `eventIdStore.close()`!
// The Kafka Streams API will automatically close stores when necessary.
}
}
@Test
public void shouldRemoveDuplicatesFromTheInput() throws Exception {
String firstId = UUID.randomUUID().toString(); // e.g. "4ff3cb44-abcb-46e3-8f9a-afb7cc74fbb8"
String secondId = UUID.randomUUID().toString();
String thirdId = UUID.randomUUID().toString();
List<String> inputValues = Arrays.asList(firstId, secondId, firstId, firstId, secondId, thirdId,
thirdId, firstId, secondId);
List<String> expectedValues = Arrays.asList(firstId, secondId, thirdId);
//
// Step 1: Configure and start the processor topology.
//
StreamsBuilder builder = new StreamsBuilder();
Properties streamsConfiguration = new Properties();
streamsConfiguration.put(StreamsConfig.APPLICATION_ID_CONFIG, "deduplication-lambda-integration-test");
streamsConfiguration.put(StreamsConfig.BOOTSTRAP_SERVERS_CONFIG, CLUSTER.bootstrapServers());
streamsConfiguration.put(StreamsConfig.DEFAULT_KEY_SERDE_CLASS_CONFIG, Serdes.ByteArray().getClass().getName());
streamsConfiguration.put(StreamsConfig.DEFAULT_VALUE_SERDE_CLASS_CONFIG, Serdes.String().getClass().getName());
// The commit interval for flushing records to state stores and downstream must be lower than
// this integration test's timeout (30 secs) to ensure we observe the expected processing results.
streamsConfiguration.put(StreamsConfig.COMMIT_INTERVAL_MS_CONFIG, TimeUnit.SECONDS.toMillis(10));
streamsConfiguration.put(ConsumerConfig.AUTO_OFFSET_RESET_CONFIG, "earliest");
// Use a temporary directory for storing state, which will be automatically removed after the test.
streamsConfiguration.put(StreamsConfig.STATE_DIR_CONFIG, TestUtils.tempDirectory().getAbsolutePath());
// How long we "remember" an event. During this time, any incoming duplicates of the event
// will be, well, dropped, thereby de-duplicating the input data.
//
// The actual value depends on your use case. To reduce memory and disk usage, you could
// decrease the size to purge old windows more frequently at the cost of potentially missing out
// on de-duplicating late-arriving records.
long maintainDurationPerEventInMs = TimeUnit.MINUTES.toMillis(10);
// The number of segments has no impact on "correctness".
// Using more segments implies larger overhead but allows for more fined grained record expiration
// Note: the specified retention time is a _minimum_ time span and no strict upper time bound
int numberOfSegments = 3;
// retention period must be at least window size -- for this use case, we don't need a longer retention period
// and thus just use the window size as retention time
long retentionPeriod = maintainDurationPerEventInMs;
StoreBuilder<WindowStore<String, Long>> dedupStoreBuilder = Stores.windowStoreBuilder(
Stores.persistentWindowStore(storeName,
retentionPeriod,
numberOfSegments,
maintainDurationPerEventInMs,
false
),
Serdes.String(),
Serdes.Long());
builder.addStateStore(dedupStoreBuilder);
KStream<byte[], String> input = builder.stream(inputTopic);
KStream<byte[], String> deduplicated = input.transform(
// In this example, we assume that the record value as-is represents a unique event ID by
// which we can perform de-duplication. If your records are different, adapt the extractor
// function as needed.
() -> new DeduplicationTransformer<>(maintainDurationPerEventInMs, (key, value) -> value),
storeName);
deduplicated.to(outputTopic);
KafkaStreams streams = new KafkaStreams(builder.build(), streamsConfiguration);
streams.start();
//
// Step 2: Produce some input data to the input topic.
//
Properties producerConfig = new Properties();
producerConfig.put(ProducerConfig.BOOTSTRAP_SERVERS_CONFIG, CLUSTER.bootstrapServers());
producerConfig.put(ProducerConfig.ACKS_CONFIG, "all");
producerConfig.put(ProducerConfig.RETRIES_CONFIG, 0);
producerConfig.put(ProducerConfig.KEY_SERIALIZER_CLASS_CONFIG, ByteArraySerializer.class);
producerConfig.put(ProducerConfig.VALUE_SERIALIZER_CLASS_CONFIG, StringSerializer.class);
IntegrationTestUtils.produceValuesSynchronously(inputTopic, inputValues, producerConfig);
//
// Step 3: Verify the application's output data.
//
Properties consumerConfig = new Properties();
consumerConfig.put(ConsumerConfig.BOOTSTRAP_SERVERS_CONFIG, CLUSTER.bootstrapServers());
consumerConfig.put(ConsumerConfig.GROUP_ID_CONFIG, "deduplication-integration-test-standard-consumer");
consumerConfig.put(ConsumerConfig.AUTO_OFFSET_RESET_CONFIG, "earliest");
consumerConfig.put(ConsumerConfig.KEY_DESERIALIZER_CLASS_CONFIG, ByteArrayDeserializer.class);
consumerConfig.put(ConsumerConfig.VALUE_DESERIALIZER_CLASS_CONFIG, StringDeserializer.class);
List<String> actualValues = IntegrationTestUtils.waitUntilMinValuesRecordsReceived(consumerConfig,
outputTopic, expectedValues.size());
streams.close();
assertThat(actualValues).containsExactlyElementsOf(expectedValues);
}
}