forked from mikexcohen/AnalyzingNeuralTimeSeries
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathinterpolate_perrinX.m
161 lines (131 loc) · 3.93 KB
/
interpolate_perrinX.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
%INTERPOLATE_PERRINX Interpolate EEG electrodes.
% interp_data = interpolate_perrinX(data,x,y,z[,leg_order,smoothing]);
%
% INPUTS :
% data : EEG data (can be N-D, but first dimension must be electrodes)
% Input all data, not only good electrodes!
% x,y,z : x,y,z coordinates of electrode positions (e.g., [EEG.chanlocs.X])
% bad_elecs : index of electrodes to interpolate
%
% (optional inputs)
% leg_order : order of Legendre polynomial (default is 10)
% smoothing : G smoothing parameter (lambda), set to 1e-5 by default
%
%
% OUTPUTS :
% data : entire input data with bad electrodes replaced by
% interpolated data
% (optional outputs)
% G,Gi : G matrices for good electrodes and interpolated electrodes
%
% This is an implementation of algorithms described by
% Perrin, Pernier, Bertrand, and Echallier (1989). PubMed #2464490
function [data,G,Gi] = interpolate_perrinX(data,x,y,z,bad_electrodes,varargin) % vararg order: leg_order,smoothing
if nargin<5
help interpolate_perrinX
error('Read help file!')
end
%% separate the goodies from the baddies
good_electrodes = true(size(x));
good_electrodes(bad_electrodes) = false;
gx = x(good_electrodes);
gy = y(good_electrodes);
gz = z(good_electrodes);
bx = x(bad_electrodes);
by = y(bad_electrodes);
bz = z(bad_electrodes);
numelectrodes = numel(gx);
numelectrodesi = numel(bx);
m=2;
if numel(varargin)>0 && ~isempty(varargin{1})
leg_order=varargin{1};
else
leg_order=30;
end
% scale XYZ coordinates to unit sphere
[junk,junk,spherical_radii] = cart2sph(x,y,z);
maxrad = max(spherical_radii);
gx = gx./maxrad;
gy = gy./maxrad;
gz = gz./maxrad;
bx = bx./maxrad;
by = by./maxrad;
bz = bz./maxrad;
%% compute G matrix for good electrodes
% initialize
G=zeros(numelectrodes);
cosdist=zeros(numelectrodes);
for i=1:numelectrodes
for j=i+1:numelectrodes
cosdist(i,j) = 1 - (( (gx(i)-gx(j))^2 + (gy(i)-gy(j))^2 + (gz(i)-gz(j))^2 ) / 2 );
end
end
cosdist = cosdist+cosdist' + eye(numelectrodes);
% compute Legendre polynomial
legpoly = zeros(leg_order,numelectrodes,numelectrodes);
for ni=1:leg_order
temp = legendre(ni,cosdist);
legpoly(ni,:,:) = temp(1,:,:);
end
% precompute electrode-independent variables
twoN1 = 2*(1:leg_order)+1;
gdenom = ((1:leg_order).*((1:leg_order)+1)).^m;
for i=1:numelectrodes
for j=i:numelectrodes
g=0;
for ni=1:leg_order
% compute G and H terms
g = g + (twoN1(ni) * legpoly(ni,i,j)) / gdenom(ni);
end
G(i,j) = g/(4*pi);
end
end
% symmetric matrix
G=G+G';
G = G-eye(numelectrodes)*G(1)/2;
% add smoothing constant to G diagonal
if numel(varargin)==2
smoothing=varargin{2};
else
smoothing=1e-5;
end
% add smoothing constant to diagonal
% (change G so output is unadulterated)
Gs = G + eye(numelectrodes)*smoothing;
%% compute G matrix for to-be-interpolated electrodes
Gi=zeros(numelectrodesi,numelectrodes);
cosdisti=zeros(numelectrodesi);
for i=1:numelectrodesi
for j=1:numelectrodes
cosdisti(i,j) = 1 - (( (bx(i)-gx(j))^2 + (by(i)-gy(j))^2 + (bz(i)-gz(j))^2 ) / 2 );
end
end
% compute Legendre polynomial
legpolyi = zeros(leg_order,numelectrodesi,numelectrodes);
for ni=1:leg_order
temp = legendre(ni,cosdisti);
legpolyi(ni,:,:) = temp(1,:,:);
end
for i=1:numelectrodesi
for j=1:numelectrodes
g=0;
for ni=1:leg_order
% compute G and H terms
g = g + (twoN1(ni) * legpolyi(ni,i,j)) / gdenom(ni);
end
Gi(i,j) = g/(4*pi);
end
end
%% interpolate
% reshape data to electrodes X time/trials
orig_data_size = squeeze(size(data));
if any(orig_data_size==1)
data=data(:);
else
data = reshape(data,orig_data_size(1),prod(orig_data_size(2:end)));
end
% interpolate and reshape to original data size
data(bad_electrodes,:) = Gi*(pinv(G)*data(good_electrodes,:));
data = reshape(data,orig_data_size);
%% end