-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathmain.py
101 lines (84 loc) · 2.78 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
import numpy as np
import matplotlib.pyplot as plt
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
import torchvision
import myDataLoader
class Net(nn.Module):
def __init__(self):
super(Net, self).__init__()
self.conv1 = nn.Conv2d(3, 6, 5)
self.pool = nn.MaxPool2d(2, 2)
self.conv2 = nn.Conv2d(6, 16, 5)
self.fc1 = nn.Linear(16 * 5 * 5, 120)
self.fc2 = nn.Linear(120, 84)
self.fc3 = nn.Linear(84, 10)
def forward(self, x):
x = self.pool(F.relu(self.conv1(x)))
x = self.pool(F.relu(self.conv2(x)))
x = x.view(-1, 16 * 5 * 5)
x = F.relu(self.fc1(x))
x = F.relu(self.fc2(x))
x = self.fc3(x)
return x
def train(trainloader):
net = Net()
criterion = nn.CrossEntropyLoss()
optimizer = optim.SGD(net.parameters(), lr=0.001, momentum=0.9)
for epoch in range(2):
running_loss = 0.0
for i, data in enumerate(trainloader, 0):
inputs, labels = data
optimizer.zero_grad()
outputs = net(inputs)
loss = criterion(outputs, labels)
loss.backward()
optimizer.step()
running_loss += loss.item()
if i % 2000 == 1999:
print('[%d,%5d] loss: %.3f'%
(epoch + 1, i + 1, running_loss / 2000))
running_loss=0.0
print('Finished Training')
return net
def imshow(img):
img = img / 2 + 0.5
npimg = img.numpy()
plt.imshow(np.transpose(npimg, (1, 2, 0)))
plt.show()
training=False
PATH = './cifar_net.pth'
dataloader=myDataLoader.trainloader
classes = myDataLoader.classes
testloader=myDataLoader.testloader
if __name__=="__main__":
if training:
net=train(dataloader)
torch.save(net.state_dict(), PATH)
print('Net parameters saved in '+PATH)
else:
dataiter=iter(testloader)
images,labels=dataiter.next()
imshow(torchvision.utils.make_grid(images))
print("GroudTruth: ",
" ".join('%5s' % classes[labels[j]] for j in range(4)))
net=Net()
net.load_state_dict(torch.load(PATH))
outputs=net(images)
_,predicted=torch.max(outputs,1)
print("Predicted: ",
" ".join("%5s"%(classes[predicted[j]])
for j in range(4)))
correct=0
total=0
with torch.no_grad():
for data in testloader:
images,labels=data
outputs=net(images)
_,predicted=torch.max(outputs,1)
total+=labels.size(0)
correct+=(predicted==labels).sum().item()
print('Accuracy of the network on the 10000 test images: %d %%' % (
100 * correct / total))