forked from dsprenkels/sss
-
Notifications
You must be signed in to change notification settings - Fork 0
/
hazmat.c
353 lines (312 loc) · 8.62 KB
/
hazmat.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
/*
* Implementation of the hazardous parts of the SSS library
*
* Author: Daan Sprenkels <[email protected]>
*
* This code contains the actual Shamir secret sharing functionality. The
* implementation of this code is based on the idea that the user likes to
* generate/combine 32 shares (in GF(2^8) at the same time, because a 256 bit
* key will be exactly 32 bytes. Therefore we bitslice all the input and
* unbitslice the output right before returning.
*
* This bitslice approach optimizes natively on all architectures that are 32
* bit or more. Care is taken to use not too many registers, to ensure that no
* values have to be leaked to the stack.
*
* All functions in this module are implemented constant time and constant
* lookup operations, as all proper crypto code must be.
*/
#include "randombytes.h"
#include "hazmat.h"
#include <assert.h>
#include <string.h>
typedef struct {
uint8_t x;
uint8_t y;
} ByteShare;
static void
bitslice(uint32_t r[8], const uint8_t x[32])
{
size_t bit_idx, arr_idx;
uint32_t cur;
memset(r, 0, sizeof(uint32_t[8]));
for (arr_idx = 0; arr_idx < 32; arr_idx++) {
cur = (uint32_t) x[arr_idx];
for (bit_idx = 0; bit_idx < 8; bit_idx++) {
r[bit_idx] |= ((cur >> bit_idx) & 1) << arr_idx;
}
}
}
static void
unbitslice(uint8_t r[32], const uint32_t x[8])
{
size_t bit_idx, arr_idx;
uint32_t cur;
memset(r, 0, sizeof(uint8_t[32]));
for (bit_idx = 0; bit_idx < 8; bit_idx++) {
cur = (uint32_t) x[bit_idx];
for (arr_idx = 0; arr_idx < 32; arr_idx++) {
r[arr_idx] |= ((cur >> arr_idx) & 1) << bit_idx;
}
}
}
static void
bitslice_setall(uint32_t r[8], const uint8_t x)
{
size_t idx;
for (idx = 0; idx < 8; idx++) {
r[idx] = ((int32_t) ((x & (1 << idx)) << (31 - idx))) >> 31;
}
}
/*
* Add (XOR) `r` with `x` and store the result in `r`.
*/
static void
gf256_add(uint32_t r[8], const uint32_t x[8])
{
size_t idx;
for (idx = 0; idx < 8; idx++) r[idx] ^= x[idx];
}
/*
* Safely multiply two bitsliced polynomials in GF(2^8) reduced by
* x^8 + x^4 + x^3 + x + 1. `r` and `a` may overlap, but overlapping of `r`
* and `b` will produce an incorrect result! If you need to square a polynomial
* use `gf256_square` instead.
*/
static void
gf256_mul(uint32_t r[8], const uint32_t a[8], const uint32_t b[8])
{
/* This function implements Russian Peasant multiplication on two
* bitsliced polynomials.
*
* I personally think that these kinds of long lists of operations
* are often a bit ugly. A double for loop would be nicer and would
* take up a lot less lines of code.
* However, some compilers seem to fail in optimizing these kinds of
* loops. So we will just have to do this by hand.
*/
uint32_t a2[8];
memcpy(a2, a, sizeof(uint32_t[8]));
r[0] = a2[0] & b[0]; /* add (assignment, because r is 0) */
r[1] = a2[1] & b[0];
r[2] = a2[2] & b[0];
r[3] = a2[3] & b[0];
r[4] = a2[4] & b[0];
r[5] = a2[5] & b[0];
r[6] = a2[6] & b[0];
r[7] = a2[7] & b[0];
a2[0] ^= a2[7]; /* reduce */
a2[2] ^= a2[7];
a2[3] ^= a2[7];
r[0] ^= a2[7] & b[1]; /* add */
r[1] ^= a2[0] & b[1];
r[2] ^= a2[1] & b[1];
r[3] ^= a2[2] & b[1];
r[4] ^= a2[3] & b[1];
r[5] ^= a2[4] & b[1];
r[6] ^= a2[5] & b[1];
r[7] ^= a2[6] & b[1];
a2[7] ^= a2[6]; /* reduce */
a2[1] ^= a2[6];
a2[2] ^= a2[6];
r[0] ^= a2[6] & b[2]; /* add */
r[1] ^= a2[7] & b[2];
r[2] ^= a2[0] & b[2];
r[3] ^= a2[1] & b[2];
r[4] ^= a2[2] & b[2];
r[5] ^= a2[3] & b[2];
r[6] ^= a2[4] & b[2];
r[7] ^= a2[5] & b[2];
a2[6] ^= a2[5]; /* reduce */
a2[0] ^= a2[5];
a2[1] ^= a2[5];
r[0] ^= a2[5] & b[3]; /* add */
r[1] ^= a2[6] & b[3];
r[2] ^= a2[7] & b[3];
r[3] ^= a2[0] & b[3];
r[4] ^= a2[1] & b[3];
r[5] ^= a2[2] & b[3];
r[6] ^= a2[3] & b[3];
r[7] ^= a2[4] & b[3];
a2[5] ^= a2[4]; /* reduce */
a2[7] ^= a2[4];
a2[0] ^= a2[4];
r[0] ^= a2[4] & b[4]; /* add */
r[1] ^= a2[5] & b[4];
r[2] ^= a2[6] & b[4];
r[3] ^= a2[7] & b[4];
r[4] ^= a2[0] & b[4];
r[5] ^= a2[1] & b[4];
r[6] ^= a2[2] & b[4];
r[7] ^= a2[3] & b[4];
a2[4] ^= a2[3]; /* reduce */
a2[6] ^= a2[3];
a2[7] ^= a2[3];
r[0] ^= a2[3] & b[5]; /* add */
r[1] ^= a2[4] & b[5];
r[2] ^= a2[5] & b[5];
r[3] ^= a2[6] & b[5];
r[4] ^= a2[7] & b[5];
r[5] ^= a2[0] & b[5];
r[6] ^= a2[1] & b[5];
r[7] ^= a2[2] & b[5];
a2[3] ^= a2[2]; /* reduce */
a2[5] ^= a2[2];
a2[6] ^= a2[2];
r[0] ^= a2[2] & b[6]; /* add */
r[1] ^= a2[3] & b[6];
r[2] ^= a2[4] & b[6];
r[3] ^= a2[5] & b[6];
r[4] ^= a2[6] & b[6];
r[5] ^= a2[7] & b[6];
r[6] ^= a2[0] & b[6];
r[7] ^= a2[1] & b[6];
a2[2] ^= a2[1]; /* reduce */
a2[4] ^= a2[1];
a2[5] ^= a2[1];
r[0] ^= a2[1] & b[7]; /* add */
r[1] ^= a2[2] & b[7];
r[2] ^= a2[3] & b[7];
r[3] ^= a2[4] & b[7];
r[4] ^= a2[5] & b[7];
r[5] ^= a2[6] & b[7];
r[6] ^= a2[7] & b[7];
r[7] ^= a2[0] & b[7];
}
/*
* Square `x` in GF(2^8) and write the result to `r`. `r` and `x` may overlap.
*/
static void
gf256_square(uint32_t r[8], const uint32_t x[8])
{
uint32_t r8, r10, r12, r14;
/* Use the Freshman's Dream rule to square the polynomial
* Assignments are done from 7 downto 0, because this allows the user
* to execute this function in-place (e.g. `gf256_square(r, r);`).
*/
r14 = x[7];
r12 = x[6];
r10 = x[5];
r8 = x[4];
r[6] = x[3];
r[4] = x[2];
r[2] = x[1];
r[0] = x[0];
/* Reduce with x^8 + x^4 + x^3 + x + 1 until order is less than 8 */
r[7] = r14; /* r[7] was 0 */
r[6] ^= r14;
r10 ^= r14;
/* Skip, because r13 is always 0 */
r[4] ^= r12;
r[5] = r12; /* r[5] was 0 */
r[7] ^= r12;
r8 ^= r12;
/* Skip, because r11 is always 0 */
r[2] ^= r10;
r[3] = r10; /* r[3] was 0 */
r[5] ^= r10;
r[6] ^= r10;
r[1] = r14; /* r[1] was 0 */
r[2] ^= r14; /* Substitute r9 by r14 because they will always be equal*/
r[4] ^= r14;
r[5] ^= r14;
r[0] ^= r8;
r[1] ^= r8;
r[3] ^= r8;
r[4] ^= r8;
}
/*
* Invert `x` in GF(2^8) and write the result to `r`
*/
static void
gf256_inv(uint32_t r[8], uint32_t x[8])
{
uint32_t y[8], z[8];
gf256_square(y, x); // y = x^2
gf256_square(y, y); // y = x^4
gf256_square(r, y); // r = x^8
gf256_mul(z, r, x); // z = x^9
gf256_square(r, r); // r = x^16
gf256_mul(r, r, z); // r = x^25
gf256_square(r, r); // r = x^50
gf256_square(z, r); // z = x^100
gf256_square(z, z); // z = x^200
gf256_mul(r, r, z); // r = x^250
gf256_mul(r, r, y); // r = x^254
}
/*
* Create `k` key shares of the key given in `key`. The caller has to ensure
* that the array `out` has enough space to hold at least `n` sss_Keyshare
* structs.
*/
void
sss_create_keyshares(sss_Keyshare *out,
const uint8_t key[32],
uint8_t n,
uint8_t k)
{
/* Check if the parameters are valid */
assert(n != 0);
assert(k != 0);
assert(k <= n);
uint8_t share_idx, coeff_idx, unbitsliced_x;
uint32_t poly0[8], poly[k-1][8], x[8], y[8], xpow[8], tmp[8];
/* Put the secret in the bottom part of the polynomial */
bitslice(poly0, key);
/* Generate the other terms of the polynomial */
randombytes((void*) poly, sizeof(poly));
for (share_idx = 0; share_idx < n; share_idx++) {
/* x value is in 1..n */
unbitsliced_x = share_idx + 1;
out[share_idx][0] = unbitsliced_x;
bitslice_setall(x, unbitsliced_x);
/* Calculate y */
memset(y, 0, sizeof(y));
memset(xpow, 0, sizeof(xpow));
xpow[0] = ~0;
gf256_add(y, poly0);
for (coeff_idx = 0; coeff_idx < (k-1); coeff_idx++) {
gf256_mul(xpow, xpow, x);
gf256_mul(tmp, xpow, poly[coeff_idx]);
gf256_add(y, tmp);
}
unbitslice(&out[share_idx][1], y);
}
}
/*
* Restore the `k` sss_Keyshare structs given in `shares` and write the result
* to `key`.
*/
void sss_combine_keyshares(uint8_t key[32],
const sss_Keyshare *key_shares,
uint8_t k)
{
size_t share_idx, idx1, idx2;
uint32_t xs[k][8], ys[k][8];
uint32_t num[8], denom[8], tmp[8];
uint32_t secret[8] = {0};
/* Collect the x and y values */
for (share_idx = 0; share_idx < k; share_idx++) {
bitslice_setall(xs[share_idx], key_shares[share_idx][0]);
bitslice(ys[share_idx], &key_shares[share_idx][1]);
}
/* Use Lagrange basis polynomials to calculate the secret coefficient */
for (idx1 = 0; idx1 < k; idx1++) {
memset(num, 0, sizeof(num));
memset(denom, 0, sizeof(denom));
num[0] = ~0; /* num is the numerator (=1) */
denom[0] = ~0; /* denom is the numerator (=1) */
for (idx2 = 0; idx2 < k; idx2++) {
if (idx1 == idx2) continue;
gf256_mul(num, num, xs[idx2]);
memcpy(tmp, xs[idx1], sizeof(uint32_t[8]));
gf256_add(tmp, xs[idx2]);
gf256_mul(denom, denom, tmp);
}
gf256_inv(tmp, denom); /* inverted denominator */
gf256_mul(num, num, tmp); /* basis polynomial */
gf256_mul(num, num, ys[idx1]); /* scaled coefficient */
gf256_add(secret, num);
}
unbitslice(key, secret);
}