forked from Pecnut/stokesian-dynamics
-
Notifications
You must be signed in to change notification settings - Fork 0
/
position_setups.py
executable file
·418 lines (362 loc) · 22.3 KB
/
position_setups.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
#!/usr/bin/env python
# -*- coding: utf-8 -*-
# Adam Townsend, [email protected], 17/10/2014
import numpy as np
from functions_shared import add_sphere_rotations_to_positions, same_setup_as
from os import sys
import subprocess
import sys as sys2
def pos_setup(n):
desc = ""
if n == 1:
# Test case 1
# Durlofsky, Brady & Bossis, 1987. Dynamic simulation of hydrodynamically interacting particles. Figure 1.
# This test case looks at horizontal chains of 5, 9 and 15 spheres sedimenting vertically.
# The instantaneous drag coefficient, F/(6*pi*mu*a*U), is measured for each sphere in the chain, in each case,
# i.e. it runs for 1 timestep. Here we set up the chain of length 15.
num_spheres = 15
sphere_sizes = np.array([1 for i in range(num_spheres)])
sphere_positions = np.array([[4*i,0,0] for i in range(num_spheres)])
sphere_rotations = add_sphere_rotations_to_positions(sphere_positions,sphere_sizes,np.array([[1,0,0],[0,0,1]]))
dumbbell_sizes = np.array([])
dumbbell_positions = np.empty([0,3])
dumbbell_deltax = np.empty([0,3])
elif n == 2:
# Test case 2
# Durlofsky, Brady & Bossis, 1987. Dynamic simulation of hydrodynamically interacting particles. Figure 5.
# This test case considers three particles sedimenting vertically, and looks at their interesting paths over
# a large number of timesteps.
sphere_sizes = np.array([1,1,1])
sphere_positions = np.array([[-5,0,0],[0,0,0],[7,0,0]])
sphere_rotations = add_sphere_rotations_to_positions(sphere_positions,sphere_sizes,np.array([[1,0,0],[0,0,1]]))
dumbbell_sizes = np.array([])
dumbbell_positions = np.empty([0,3])
dumbbell_deltax = np.empty([0,3])
elif n == 3:
# Test case 3
# Brady, Phillips, Jester, Bossis 1988. Dynamic simulation of hydrodynamically interacting suspensions. Figure 1.
# Figure corrected by:
# Sierou & Brady 2001. Accelerated Stokesian Dynamics simulations. Figure 9.
# This test case is periodic and measures the velocity of a sedimenting, simple cubic array for different particle
# concentrations.
num_spheres = 8
cube_side_length = 8
sphere_sizes = np.array([1 for i in range(num_spheres)])
sphere_positions,box_bottom_left,box_top_right = simple_cubic_8(cube_side_length)
sphere_rotations = add_sphere_rotations_to_positions(sphere_positions,sphere_sizes,np.array([[1,0,0],[0,0,1]]))
dumbbell_sizes = np.array([])
dumbbell_positions = np.empty([0,3])
dumbbell_deltax = np.empty([0,3])
elif n == 4:
# Test case 4
# Two spheres, two dumbbells
sphere_sizes = np.array([1,1])
sphere_positions = np.array([[0,0,0],[4.5,0,4.5]])
sphere_rotations = add_sphere_rotations_to_positions(sphere_positions,sphere_sizes,np.array([[1,0,0],[0,0,1]]))
dumbbell_sizes = np.array([0.1,0.1])
dumbbell_positions = np.array([[4.5,0,0],[0,0,4.5]])
dumbbell_deltax = np.array([[np.sqrt(2),0,np.sqrt(2)],[np.sqrt(2),0,np.sqrt(2)]])
elif n == 5:
# Test case 5
# Randomly arranged spheres
num_spheres = 40
sphere_sizes = np.array([1 for i in range(num_spheres)])
L = 17 # This is how wide you want to box for all the particles to fit inside (not just putting the centres inside this box)
# This will put the centres in a given box size
sphere_positions = randomise_spheres([-L/2.+1,0,-L/2.+1],[L/2.-1,0,L/2.-1],sphere_sizes,np.array([]), np.empty([0,3]))
sphere_rotations = add_sphere_rotations_to_positions(sphere_positions,sphere_sizes,np.array([[1,0,0],[0,0,1]]))
dumbbell_sizes = np.array([])
dumbbell_positions = np.empty([0,3])
dumbbell_deltax = np.empty([0,3])
elif n == 6:
# Test case 5
# Two walls of spheres with dumbbells randomly distributed between them.
num_lid_particles_each_lid = 45
num_random_dumbbells = 100*2
sphere_sizes = np.array([1 for n in range(num_lid_particles_each_lid*2)])
sep = 2.00001
sphere_positions = np.array([[sep*i-(num_lid_particles_each_lid//2)*sep,0,0] for i in range(num_lid_particles_each_lid)] + [[sep*i-(num_lid_particles_each_lid//2)*sep,0,11] for i in range(num_lid_particles_each_lid)])
sphere_rotations = add_sphere_rotations_to_positions(sphere_positions,sphere_sizes,np.array([[1,0,0],[0,0,1]]))
dumbbell_sizes = np.array([0.1 for n in range (num_random_dumbbells)])
random_box_bottom_left = [-17,0,1+2*dumbbell_sizes[0]]
random_box_top_right = [17,0,10-2*dumbbell_sizes[0]]
(dumbbell_positions, dumbbell_deltax) = randomise_dumbbells(random_box_bottom_left,random_box_top_right,dumbbell_sizes,dx=2,phi=0)
elif n == 7:
# To replicate setup of an existing output file
(sphere_sizes, sphere_positions, sphere_rotations, dumbbell_sizes, dumbbell_positions, dumbbell_deltax) = same_setup_as('FILENAME', frameno=0)
elif n == 8:
# Two sphere
sphere_sizes = np.array([1, 1])
sphere_positions = np.array([[-1.1,0,0],[1.1,0,0]])
sphere_rotations = add_sphere_rotations_to_positions(sphere_positions,sphere_sizes,np.array([[1,0,0],[0,0,1]]))
dumbbell_sizes = np.array([])
dumbbell_positions = np.empty([0,3])
dumbbell_deltax = np.empty([0,3])
try:
sphere_sizes
except NameError:
print "ERROR: You have not inputted a valid position setup number."
posdata = (sphere_sizes, sphere_positions, sphere_rotations, dumbbell_sizes, dumbbell_positions, dumbbell_deltax)
return posdata, desc
def randomise_spheres(random_box_bottom_left,random_box_top_right,random_sphere_sizes,current_sphere_sizes, current_sphere_positions):
sphere_positions_out = current_sphere_positions
num_current_spheres = current_sphere_sizes.shape[0]
all_sphere_sizes = np.concatenate([current_sphere_sizes, random_sphere_sizes])
print "Randomly distributing " + str(len(random_sphere_sizes)) + " spheres (using a naive method in Python)... ",
for i in range(len(random_sphere_sizes)):
while 1 == 1:
proposed_sphere_position = np.array([np.random.rand()*(random_box_top_right[0]-random_box_bottom_left[0])+random_box_bottom_left[0], np.random.rand()*(random_box_top_right[1]-random_box_bottom_left[1])+random_box_bottom_left[1], np.random.rand()*(random_box_top_right[2]-random_box_bottom_left[2])+random_box_bottom_left[2]])
too_close = 0
for j in range(num_current_spheres+i):
if np.linalg.norm(proposed_sphere_position - sphere_positions_out[j]) < (random_sphere_sizes[i]+all_sphere_sizes[j]):
too_close = too_close + 1
if too_close == 0:
symbol = '|'
if (i+1)%10 == 0:
symbol = 'X'
if (i+1)%100 == 0:
symbol = 'C'
sys.stdout.write(symbol)
sys.stdout.flush()
break
sphere_positions_out = np.append(sphere_positions_out,[proposed_sphere_position],axis=0)
print " succeeded."
random_sphere_positions = sphere_positions_out[current_sphere_positions.shape[0]:all_sphere_sizes.shape[0]]
distance_matrix = np.linalg.norm(random_sphere_positions-random_sphere_positions[:,None],axis=2)
min_element_distance = np.min(distance_matrix[np.nonzero(distance_matrix)])
two_closest_elements = np.where(distance_matrix == min_element_distance)
print "Min added sphere s': " + str(min_element_distance/random_sphere_sizes[0])
print "Closest two spheres: " + str(two_closest_elements[0])
box_dimensions = abs(np.asarray(random_box_top_right) - np.asarray(random_box_bottom_left))
if box_dimensions[1] == 0: #2D
box_volume = box_dimensions[0]*box_dimensions[2]
sphere_volumes = np.pi*np.dot(random_sphere_sizes,random_sphere_sizes)
else: #3D
box_volume = box_dimensions[0]*box_dimensions[1]*box_dimensions[2]
sphere_volumes = 4./3. * np.pi * np.sum(np.asarray(random_sphere_sizes)**3)
volume_fraction = sphere_volumes/box_volume
print "Volume fraction: " + str("{:.1f}".format(volume_fraction * 100)) + "%"
return random_sphere_positions
def randomise_dumbbells(random_box_bottom_left,random_box_top_right,dumbbell_sizes,dx=1,theta='r',phi='r',current_sphere_sizes=np.array([]),current_sphere_positions=np.empty([0,3])):
dumbbell_positions = np.zeros([len(dumbbell_sizes),3])
dumbbell_deltax = np.zeros([len(dumbbell_sizes),3])
bead_positions = np.zeros([2*len(dumbbell_sizes),3])
num_fails=0
if theta =='r': random_theta = True
else: random_theta = False
if phi == 'r': random_phi = True
else: random_phi = False
print "Randomly distributing " + str(len(dumbbell_sizes)) + " dumbbells... ",
for i in range(len(dumbbell_sizes)):
while 1 == 1:
proposed_bead1_position = np.array([np.random.rand()*(random_box_top_right[0]-random_box_bottom_left[0])+random_box_bottom_left[0], np.random.rand()*(random_box_top_right[1]-random_box_bottom_left[1])+random_box_bottom_left[1], np.random.rand()*(random_box_top_right[2]-random_box_bottom_left[2])+random_box_bottom_left[2]])
too_close = 0
for j in range(len(current_sphere_sizes)):
if np.linalg.norm(proposed_bead1_position - current_sphere_positions[j]) < (dumbbell_sizes[i]+current_sphere_sizes[j]):
too_close = too_close + 1
if too_close == 0:
for j in range(2*i):
if np.linalg.norm(proposed_bead1_position - bead_positions[j]) < (dumbbell_sizes[i]+dumbbell_sizes[j//2]):
too_close = too_close + 1
if too_close == 0:
bingo = 0
for tries in xrange(100):
if random_theta: theta = np.random.rand()*np.pi*2
if random_phi: phi = np.random.rand()*np.pi
proposed_bead2_position = proposed_bead1_position + np.array([dx*np.sin(theta)*np.cos(phi),dx*np.sin(theta)*np.sin(phi),dx*np.cos(theta)])
if (proposed_bead2_position >= random_box_bottom_left).all() and (proposed_bead2_position <= random_box_top_right).all():
for j in range(len(current_sphere_sizes)):
if np.linalg.norm(proposed_bead2_position - current_sphere_positions[j]) < (dumbbell_sizes[i]+current_sphere_sizes[j]):
too_close = too_close + 1
if too_close == 0:
for j in xrange(2*i):
if np.linalg.norm(proposed_bead2_position - bead_positions[j]) < (dumbbell_sizes[i]+dumbbell_sizes[j//2]):
too_close = too_close + 1
if too_close == 0:
bingo = 1
break
if bingo == 1:
#print "G"
break
sys.stdout.write('|')
sys.stdout.flush()
bead_positions[2*i] = proposed_bead1_position
bead_positions[2*i+1] = proposed_bead2_position
dumbbell_positions[i] = 0.5*(proposed_bead1_position+proposed_bead2_position)
dumbbell_deltax[i] = (proposed_bead2_position-proposed_bead1_position)
print " succeeded."
bead_positions = np.concatenate((dumbbell_positions + 0.5*dumbbell_deltax, dumbbell_positions - 0.5*dumbbell_deltax),axis = 0)
distance_matrix = np.linalg.norm(bead_positions-bead_positions[:,None],axis=2)
min_element_distance = np.min(distance_matrix[np.nonzero(distance_matrix)])
two_closest_elements = np.where(distance_matrix == min_element_distance)
print "Min dumbbell s': " + str(min_element_distance/dumbbell_sizes[0])
print "Closest two elements: " + str(two_closest_elements[0])
box_dimensions = abs(np.asarray(random_box_top_right) - np.asarray(random_box_bottom_left))
if box_dimensions[1] == 0: #2D
box_area = box_dimensions[0]*box_dimensions[2]
box_volume = box_dimensions[0]*box_dimensions[2]*dumbbell_sizes[0]*2
sphere_areas = np.pi*np.dot(dumbbell_sizes,dumbbell_sizes)*2
sphere_volumes = 4./3. * np.pi * np.sum(np.asarray(dumbbell_sizes)**3)*2
area_fraction = sphere_areas/box_area
volume_fraction = sphere_volumes/box_volume
print "Area fraction: " + str("{:.1f}".format(area_fraction * 100)) + "%"
print "Effective volume fraction: " + str("{:.1f}".format(volume_fraction * 100)) + "%"
else: #3D
box_volume = box_dimensions[0]*box_dimensions[1]*box_dimensions[2]
sphere_volumes = 4./3. * np.pi * np.sum(np.asarray(dumbbell_sizes)**3)*2
volume_fraction = sphere_volumes/box_volume
print "Volume fraction: " + str("{:.1f}".format(volume_fraction * 100)) + "%"
return dumbbell_positions, dumbbell_deltax
def not_in_spheres(position,current_spheres_positions,current_sphere_size, dumbbell_size):
flag = 0
for centre in current_spheres_positions:
if np.linalg.norm(position - centre) < current_sphere_size + dumbbell_size:
return False
return True
def randomise_dumbbells_periodic(random_box_bottom_left,random_box_top_right,dumbbell_sizes,dx=1,theta='r',phi='r',current_sphere_sizes=np.array([]),current_sphere_positions=np.empty([0,3])):
dumbbell_positions = np.zeros([len(dumbbell_sizes),3])
dumbbell_deltax = np.zeros([len(dumbbell_sizes),3])
bead_positions = np.zeros([2*len(dumbbell_sizes),3])
num_fails=0
if theta =='r': random_theta = True
else: random_theta = False
if phi == 'r': random_phi = True
else: random_phi = False
Dx,Dy,Dz = np.array(random_box_top_right) - np.array(random_box_bottom_left)
print "Randomly distributing " + str(len(dumbbell_sizes)) + " dumbbells... ",
for i in range(len(dumbbell_sizes)):
while 1 == 1:
proposed_bead1_position = np.array([np.random.rand()*(random_box_top_right[0]-random_box_bottom_left[0])+random_box_bottom_left[0], np.random.rand()*(random_box_top_right[1]-random_box_bottom_left[1])+random_box_bottom_left[1], np.random.rand()*(random_box_top_right[2]-random_box_bottom_left[2])+random_box_bottom_left[2]])
too_close = 0
for m in [-1,0,1]: # NEW
for n in [-1,0,1]: # NEW
dxy = np.array([m*Dx,0,n*Dz]) # NEW
for j in range(len(current_sphere_sizes)):
if np.linalg.norm(proposed_bead1_position - current_sphere_positions[j]-dxy) < (dumbbell_sizes[i]+current_sphere_sizes[j]):
too_close = too_close + 1
if too_close == 0:
for j in range(2*i):
if np.linalg.norm(proposed_bead1_position - bead_positions[j]-dxy) < (dumbbell_sizes[i]+dumbbell_sizes[j//2]):
too_close = too_close + 1
if too_close == 0:
bingo = 0
for tries in xrange(100):
if random_theta: theta = np.random.rand()*np.pi*2
if random_phi: phi = np.random.rand()*np.pi
proposed_bead2_position = proposed_bead1_position + np.array([dx*np.sin(theta)*np.cos(phi),dx*np.sin(theta)*np.sin(phi),dx*np.cos(theta)])
# NOTE: I have turned off checking whether the second bead is in the box.
if 1==1: # NEW
for m in [-1,0,1]: # NEW
for n in [-1,0,1]: # NEW
dxy = np.array([m*Dx,0,n*Dz]) # NEW
for j in range(len(current_sphere_sizes)):
if np.linalg.norm(proposed_bead2_position - current_sphere_positions[j] - dxy) < (dumbbell_sizes[i]+current_sphere_sizes[j]):
too_close = too_close + 1
if too_close == 0:
for j in xrange(2*i):
if np.linalg.norm(proposed_bead2_position - bead_positions[j] - dxy) < (dumbbell_sizes[i]+dumbbell_sizes[j//2]):
too_close = too_close + 1
if too_close == 0:
bingo = 1
break
if bingo == 1:
break
q = 1000
qq = 1000
for m in [-1,0,1]: # NEW
for n in [-1,0,1]: # NEW
dxy = np.array([m*Dx,0,n*Dz]) # NEW
for p in bead_positions[:i]:
q = min(q,np.linalg.norm(proposed_bead2_position - (p+dxy)))
qq = min(qq,np.linalg.norm(proposed_bead1_position - (p+dxy)))
if min(q, qq) < 0.2:
print min(q,qq)
from IPython import embed
embed()
sys.stdout.write('|')
sys.stdout.flush()
bead_positions[2*i] = proposed_bead1_position
bead_positions[2*i+1] = proposed_bead2_position
dumbbell_positions[i] = 0.5*(proposed_bead1_position+proposed_bead2_position)
dumbbell_deltax[i] = (proposed_bead2_position-proposed_bead1_position)
# Move the dumbbell_positions (centre) to inside the periodic box
dumbbell_positions[i] = np.mod(dumbbell_positions[i]-random_box_bottom_left,[Dx,1e6,Dz])+random_box_bottom_left
print " succeeded."
bead_positions = np.concatenate((dumbbell_positions + 0.5*dumbbell_deltax, dumbbell_positions - 0.5*dumbbell_deltax),axis = 0)
distance_matrix = np.linalg.norm(bead_positions-bead_positions[:,None],axis=2)
min_element_distance = np.min(distance_matrix[np.nonzero(distance_matrix)])
two_closest_elements = np.where(distance_matrix == min_element_distance)
print "Min dumbbell s': " + str(min_element_distance/dumbbell_sizes[0])
print "Closest two elements: " + str(two_closest_elements[0])
print "Mean dumbbell pitch: " + "%3.1f"%(np.mean(np.arccos(np.abs(np.dot(dumbbell_deltax/np.linalg.norm(dumbbell_deltax,axis=1)[:,None],np.array([1,0,0]))))*180/np.pi,axis=0)) + "°"
box_dimensions = abs(np.asarray(random_box_top_right) - np.asarray(random_box_bottom_left))
if box_dimensions[1] == 0: #2D
box_area = box_dimensions[0]*box_dimensions[2]
box_volume = box_dimensions[0]*box_dimensions[2]*dumbbell_sizes[0]*2
sphere_areas = np.pi*np.dot(dumbbell_sizes,dumbbell_sizes)*2
sphere_volumes = 4./3. * np.pi * np.sum(np.asarray(dumbbell_sizes)**3)*2
area_fraction = sphere_areas/box_area
volume_fraction = sphere_volumes/box_volume
print "Area fraction: " + str("{:.1f}".format(area_fraction * 100)) + "%"
print "Effective volume fraction: " + str("{:.1f}".format(volume_fraction * 100)) + "%"
else: #3D
box_volume = box_dimensions[0]*box_dimensions[1]*box_dimensions[2]
sphere_volumes = 4./3. * np.pi * np.sum(np.asarray(dumbbell_sizes)**3)*2
volume_fraction = sphere_volumes/box_volume
print "Volume fraction: " + str("{:.1f}".format(volume_fraction * 100)) + "%"
return dumbbell_positions, dumbbell_deltax
def randomise_beads_inside_quadrilateral(quadrilateral, dumbbell_sizes, current_sphere_positions, current_sphere_size):
# Works best for low densities
print "Randomly distributing dumbbells... "
a = dumbbell_sizes[0]
num_dumbbells = len(dumbbell_sizes)
num_current_spheres = len(current_sphere_positions)
random_box_bottom_left = np.array([np.min(quadrilateral[:,0]),0,np.min(quadrilateral[:,1])])
random_box_top_right = np.array([np.max(quadrilateral[:,0]),0,np.max(quadrilateral[:,1])])
dumbbell_positions = np.zeros([num_dumbbells,3])
dumbbell_deltax = np.zeros([num_dumbbells,3])
bead_positions = np.zeros([2*num_dumbbells,3])
for i in range(num_dumbbells*2):
fail = True
while fail:
fail = False
proposed_bead1_position = np.array([np.random.rand()*(random_box_top_right[0]-random_box_bottom_left[0])+random_box_bottom_left[0], np.random.rand()*(random_box_top_right[1]-random_box_bottom_left[1])+random_box_bottom_left[1], np.random.rand()*(random_box_top_right[2]-random_box_bottom_left[2])+random_box_bottom_left[2]])
if not point_inside_polygon(proposed_bead1_position[0],proposed_bead1_position[2],quadrilateral):
fail = True
if not fail:
for j in range(num_current_spheres):
if not fail and np.linalg.norm(proposed_bead1_position - current_sphere_positions[j]) < (dumbbell_sizes[i//2]+current_sphere_size):
fail = True
if not fail:
for j in range(i):
if not fail and np.linalg.norm(proposed_bead1_position - bead_positions[j]) < (dumbbell_sizes[i//2]+dumbbell_sizes[j//2]):
fail = True
sys.stdout.write('|')
sys.stdout.flush()
bead_positions[i] = proposed_bead1_position
pos3 = bead_positions.reshape([2,bead_positions.shape[0]/2,3])
pos3_dumbbell = 0.5*(pos3[0] + pos3[1])
pos3_deltax = 0.5*(pos3[1] - pos3[0])
print "... succeeded."
return pos3_dumbbell, pos3_deltax
def point_inside_polygon(x,y,poly):
n = len(poly)
inside =False
p1x,p1y = poly[0]
for i in range(n+1):
p2x,p2y = poly[i % n]
if y > min(p1y,p2y):
if y <= max(p1y,p2y):
if x <= max(p1x,p2x):
if p1y != p2y:
xinters = (y-p1y)*(p2x-p1x)/(p2y-p1y)+p1x
if p1x == p2x or x <= xinters:
inside = not inside
p1x,p1y = p2x,p2y
return inside
def simple_cubic_8(side_length):
s = side_length
sphere_positions = np.array([[np.float(i),np.float(j),np.float(k)] for i in [-s/4,s/4] for j in [-s/4,s/4] for k in [-s/4,s/4]])
box_bottom_left = np.array([-s/2,-s/2,-s/2])
box_top_right = np.array([s/2,s/2,s/2])
return sphere_positions,box_bottom_left,box_top_right