diff --git a/cleverhans/model_zoo/soft_nearest_neighbor_loss/SNNL_regularized_train.py b/cleverhans/model_zoo/soft_nearest_neighbor_loss/SNNL_regularized_train.py index ae87d33cd..a5f4bad8c 100644 --- a/cleverhans/model_zoo/soft_nearest_neighbor_loss/SNNL_regularized_train.py +++ b/cleverhans/model_zoo/soft_nearest_neighbor_loss/SNNL_regularized_train.py @@ -134,13 +134,12 @@ def imscatter(points, images, ax=None, zoom=1, cmap="hot"): ax.get_yaxis().set_ticks([]) return artists - adversarial_gradients = tf.sign( - tf.gradients(cross_entropy_loss.fprop(x, y), x)) - adv_gradients_ = sess.run(adversarial_gradients, feed_dict={ - x: x_test[:batch_size], y: y_test[:batch_size]}) - adv_gradients_ = np.reshape(adv_gradients_, (batch_size, 28*28)) + adv_grads = tf.sign(tf.gradients(cross_entropy_loss.fprop(x, y), x)) + feed_dict = {x: x_test[:batch_size], y: y_test[:batch_size]} + adv_grads_val = sess.run(adv_grads, feed_dict=feed_dict) + adv_grads_val = np.reshape(adv_grads_val, (batch_size, img_rows * img_cols)) - X_embedded = TSNE(n_components=2, verbose=0).fit_transform(adv_gradients_) + X_embedded = TSNE(n_components=2, verbose=0).fit_transform(adv_grads_val) plt.figure(num=None, figsize=(50, 50), dpi=40, facecolor='w', edgecolor='k') plt.title("TSNE of Sign of Adv Gradients, SNNLCrossEntropy Model, factor:" + str(FLAGS.SNNL_factor), fontsize=42)