forked from cseagle/blc
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathspace.cc
679 lines (597 loc) · 21.9 KB
/
space.cc
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
/* ###
* IP: GHIDRA
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "space.hh"
#include "translate.hh"
namespace ghidra {
AttributeId ATTRIB_BASE = AttributeId("base",89);
AttributeId ATTRIB_DEADCODEDELAY = AttributeId("deadcodedelay",90);
AttributeId ATTRIB_DELAY = AttributeId("delay", 91);
AttributeId ATTRIB_LOGICALSIZE = AttributeId("logicalsize",92);
AttributeId ATTRIB_PHYSICAL = AttributeId("physical",93);
// ATTRIB_PIECE is a special attribute for supporting the legacy attributes "piece1", "piece2", ..., "piece9",
// It is effectively a sequence of indexed attributes for use with Encoder::writeStringIndexed.
// The index starts at the ids reserved for "piece1" thru "piece9" but can extend farther.
AttributeId ATTRIB_PIECE = AttributeId("piece",94); // Open slots 94-102
/// Calculate \e highest based on \e addressSize, and \e wordsize.
/// This also calculates the default pointerLowerBound
void AddrSpace::calcScaleMask(void)
{
pointerLowerBound = (addressSize < 3) ? 0x100: 0x1000;
highest = calc_mask(addressSize); // Maximum address
highest = highest * wordsize + (wordsize-1); // Maximum byte address
pointerUpperBound = highest;
}
/// Initialize an address space with its basic attributes
/// \param m is the space manager associated with the new space
/// \param t is the processor translator associated with the new space
/// \param tp is the type of the new space (PROCESSOR, CONSTANT, INTERNAL,...)
/// \param nm is the name of the new space
/// \param bigEnd is \b true for big endian encoding
/// \param size is the (offset encoding) size of the new space
/// \param ws is the number of bytes in an addressable unit
/// \param ind is the integer identifier for the new space
/// \param fl can be 0 or AddrSpace::hasphysical
/// \param dl is the number of rounds to delay heritage for the new space
/// \param dead is the number of rounds to delay before dead code removal
AddrSpace::AddrSpace(AddrSpaceManager *m,const Translate *t,spacetype tp,const string &nm,bool bigEnd,
uint4 size,uint4 ws, int4 ind,uint4 fl,int4 dl,int4 dead)
{
refcount = 0; // No references to this space yet
manage = m;
trans = t;
type = tp;
name = nm;
addressSize = size;
wordsize = ws;
index = ind;
delay = dl;
deadcodedelay = dead;
minimumPointerSize = 0; // (initially) assume pointers must match the space size exactly
shortcut = ' '; // Placeholder meaning shortcut is unassigned
// These are the flags we allow to be set from constructor
flags = (fl & hasphysical);
if (bigEnd)
flags |= big_endian;
flags |= (heritaged | does_deadcode); // Always on unless explicitly turned off in derived constructor
calcScaleMask();
}
/// This is a partial constructor, for initializing a space
/// via XML
/// \param m the associated address space manager
/// \param t is the processor translator
/// \param tp the basic type of the space
AddrSpace::AddrSpace(AddrSpaceManager *m,const Translate *t,spacetype tp)
{
refcount = 0;
manage = m;
trans = t;
type = tp;
flags = (heritaged | does_deadcode); // Always on unless explicitly turned off in derived constructor
wordsize = 1;
minimumPointerSize = 0;
shortcut = ' ';
// We let big_endian get set by attribute
}
/// The logical form of the space is truncated from its actual size
/// Pointers may refer to this original size put the most significant bytes are ignored
/// \param newsize is the size (in bytes) of the truncated (logical) space
void AddrSpace::truncateSpace(uint4 newsize)
{
setFlags(truncated);
addressSize = newsize;
minimumPointerSize = newsize;
calcScaleMask();
}
/// \brief Determine if a given point is contained in an address range in \b this address space
///
/// The point is specified as an address space and offset pair plus an additional number of bytes to "skip".
/// A non-negative value is returned if the point falls in the address range.
/// If the point falls on the first byte of the range, 0 is returned. For the second byte, 1 is returned, etc.
/// Otherwise -1 is returned.
/// \param offset is the starting offset of the address range within \b this space
/// \param size is the size of the address range in bytes
/// \param pointSpace is the address space of the given point
/// \param pointOff is the offset of the given point
/// \param pointSkip is the additional bytes to skip
/// \return a non-negative value indicating where the point falls in the range, or -1
int4 AddrSpace::overlapJoin(uintb offset,int4 size,AddrSpace *pointSpace,uintb pointOff,int4 pointSkip) const
{
if (this != pointSpace)
return -1;
uintb dist = wrapOffset(pointOff+pointSkip-offset);
if (dist >= size) return -1; // but must fall before op+size
return (int4) dist;
}
/// Write the main attributes for an address within \b this space.
/// The caller provides only the \e offset, and this routine fills
/// in other details pertaining to this particular space.
/// \param encoder is the stream encoder
/// \param offset is the offset of the address
void AddrSpace::encodeAttributes(Encoder &encoder,uintb offset) const
{
encoder.writeSpace(ATTRIB_SPACE,this);
encoder.writeUnsignedInteger(ATTRIB_OFFSET, offset);
}
/// Write the main attributes of an address with \b this space
/// and a size. The caller provides the \e offset and \e size,
/// and other details about this particular space are filled in.
/// \param encoder is the stream encoder
/// \param offset is the offset of the address
/// \param size is the size of the memory location
void AddrSpace::encodeAttributes(Encoder &encoder,uintb offset,int4 size) const
{
encoder.writeSpace(ATTRIB_SPACE, this);
encoder.writeUnsignedInteger(ATTRIB_OFFSET, offset);
encoder.writeSignedInteger(ATTRIB_SIZE, size);
}
/// For an open element describing an address in \b this space, this routine
/// recovers the offset and possibly the size described by the element
/// \param decoder is the stream decoder
/// \param size is a reference where the recovered size should be stored
/// \return the recovered offset
uintb AddrSpace::decodeAttributes(Decoder &decoder,uint4 &size) const
{
uintb offset;
bool foundoffset = false;
for(;;) {
uint4 attribId = decoder.getNextAttributeId();
if (attribId == 0) break;
if (attribId == ATTRIB_OFFSET) {
foundoffset = true;
offset = decoder.readUnsignedInteger();
}
else if (attribId == ATTRIB_SIZE) {
size = decoder.readSignedInteger();
}
}
if (!foundoffset)
throw LowlevelError("Address is missing offset");
return offset;
}
/// Print the \e offset as hexidecimal digits.
/// \param s is the stream to write to
/// \param offset is the offset to be printed
void AddrSpace::printOffset(ostream &s,uintb offset) const
{
s << "0x" << hex << offset;
}
/// This is a printing method for the debugging routines. It
/// prints taking into account the \e wordsize, adding a
/// "+n" if the offset is not on-cut with wordsize. It also
/// returns the expected/typical size of values from this space.
/// \param s is the stream being written
/// \param offset is the offset to be printed
void AddrSpace::printRaw(ostream &s,uintb offset) const
{
int4 sz = getAddrSize();
if (sz > 4) {
if ((offset>>32) == 0)
sz = 4; // Don't print a bunch of zeroes at front of address
else if ((offset>>48) == 0)
sz = 6;
}
s << "0x" << setfill('0') << setw(2*sz) << hex << byteToAddress(offset,wordsize);
if (wordsize>1) {
int4 cut = offset % wordsize;
if (cut != 0)
s << '+' << dec << cut;
}
}
static int4 get_offset_size(const char *ptr,uintb &offset)
{ // Get optional size and offset fields from string
int4 size;
uint4 val;
char *ptr2;
val = 0; // Defaults
size = -1;
if (*ptr == ':') {
size = strtoul(ptr+1,&ptr2,0);
if (*ptr2 == '+')
val = strtoul(ptr2+1,&ptr2,0);
}
if (*ptr == '+')
val = strtoul(ptr+1,&ptr2,0);
offset += val; // Adjust offset
return size;
}
/// For the console mode, an address space can tailor how it
/// converts user strings into offsets within the space. The
/// base routine can read and convert register names as well
/// as absolute hex addresses. A size can be indicated by
/// appending a ':' and integer, .i.e. 0x1000:2. Offsets within
/// a register can be indicated by appending a '+' and integer,
/// i.e. eax+2
/// \param s is the string to be parsed
/// \param size is a reference to the size being returned
/// \return the parsed offset
uintb AddrSpace::read(const string &s,int4 &size) const
{
const char *enddata;
char *tmpdata;
int4 expsize;
string::size_type append;
string frontpart;
uintb offset;
append = s.find_first_of(":+");
try {
if (append == string::npos) {
const VarnodeData &point(trans->getRegister(s));
offset = point.offset;
size = point.size;
}
else {
frontpart = s.substr(0,append);
const VarnodeData &point(trans->getRegister(frontpart));
offset = point.offset;
size = point.size;
}
}
catch(LowlevelError &err) { // Name doesn't exist
offset = strtoul(s.c_str(),&tmpdata,0);
offset = addressToByte(offset,wordsize);
enddata = (const char *) tmpdata;
if (enddata - s.c_str() == s.size()) { // If no size or offset override
size = manage->getDefaultSize(); // Return "natural" size
return offset;
}
size = manage->getDefaultSize();
}
if (append != string::npos) {
enddata = s.c_str()+append;
expsize = get_offset_size( enddata, offset );
if (expsize!=-1) {
size = expsize;
return offset;
}
}
return offset;
}
/// Walk attributes of the current element and recover all the properties defining
/// this space. The processor translator, \e trans, and the
/// \e type must already be filled in.
/// \param decoder is the stream decoder
void AddrSpace::decodeBasicAttributes(Decoder &decoder)
{
deadcodedelay = -1;
for (;;) {
uint4 attribId = decoder.getNextAttributeId();
if (attribId == 0) break;
if (attribId == ATTRIB_NAME) {
name = decoder.readString();
}
if (attribId == ATTRIB_INDEX)
index = decoder.readSignedInteger();
else if (attribId == ATTRIB_SIZE)
addressSize = decoder.readSignedInteger();
else if (attribId == ATTRIB_WORDSIZE)
wordsize = decoder.readUnsignedInteger();
else if (attribId == ATTRIB_BIGENDIAN) {
if (decoder.readBool())
flags |= big_endian;
}
else if (attribId == ATTRIB_DELAY)
delay = decoder.readSignedInteger();
else if (attribId == ATTRIB_DEADCODEDELAY)
deadcodedelay = decoder.readSignedInteger();
else if (attribId == ATTRIB_PHYSICAL) {
if (decoder.readBool())
flags |= hasphysical;
}
}
if (deadcodedelay == -1)
deadcodedelay = delay; // If deadcodedelay attribute not present, set it to delay
calcScaleMask();
}
void AddrSpace::decode(Decoder &decoder)
{
uint4 elemId = decoder.openElement(); // Multiple tags: <space>, <space_other>, <space_unique>
decodeBasicAttributes(decoder);
decoder.closeElement(elemId);
}
const string ConstantSpace::NAME = "const";
const int4 ConstantSpace::INDEX = 0;
/// This constructs the unique constant space
/// By convention, the name is always "const" and the index
/// is always 0.
/// \param m is the associated address space manager
/// \param t is the associated processor translator
ConstantSpace::ConstantSpace(AddrSpaceManager *m,const Translate *t)
: AddrSpace(m,t,IPTR_CONSTANT,NAME,false,sizeof(uintb),1,INDEX,0,0,0)
{
clearFlags(heritaged|does_deadcode|big_endian);
if (HOST_ENDIAN==1) // Endianness always matches host
setFlags(big_endian);
}
int4 ConstantSpace::overlapJoin(uintb offset,int4 size,AddrSpace *pointSpace,uintb pointOff,int4 pointSkip) const
{
return -1;
}
/// Constants are always printed as hexidecimal values in
/// the debugger and console dumps
void ConstantSpace::printRaw(ostream &s,uintb offset) const
{
s << "0x" << hex << offset;
}
/// As the ConstantSpace is never saved, it should never get
/// decoded either.
void ConstantSpace::decode(Decoder &decoder)
{
throw LowlevelError("Should never decode the constant space");
}
const string OtherSpace::NAME = "OTHER";
const int4 OtherSpace::INDEX = 1;
/// Construct the \b other space, which is automatically constructed
/// by the compiler, and is only constructed once. The name should
/// always by \b OTHER.
/// \param m is the associated address space manager
/// \param t is the associated processor translator
/// \param ind is the integer identifier
OtherSpace::OtherSpace(AddrSpaceManager *m,const Translate *t,int4 ind)
: AddrSpace(m,t,IPTR_PROCESSOR,NAME,false,sizeof(uintb),1,INDEX,0,0,0)
{
clearFlags(heritaged|does_deadcode);
setFlags(is_otherspace);
}
OtherSpace::OtherSpace(AddrSpaceManager *m,const Translate *t)
: AddrSpace(m,t,IPTR_PROCESSOR)
{
clearFlags(heritaged|does_deadcode);
setFlags(is_otherspace);
}
void OtherSpace::printRaw(ostream &s,uintb offset) const
{
s << "0x" << hex << offset;
}
const string UniqueSpace::NAME = "unique";
const uint4 UniqueSpace::SIZE = 4;
/// This is the constructor for the \b unique space, which is
/// automatically constructed by the analysis engine, and
/// constructed only once. The name should always be \b unique.
/// \param m is the associated address space manager
/// \param t is the associated processor translator
/// \param ind is the integer identifier
/// \param fl are attribute flags (currently unused)
UniqueSpace::UniqueSpace(AddrSpaceManager *m,const Translate *t,int4 ind,uint4 fl)
: AddrSpace(m,t,IPTR_INTERNAL,NAME,t->isBigEndian(),SIZE,1,ind,fl,0,0)
{
setFlags(hasphysical);
}
UniqueSpace::UniqueSpace(AddrSpaceManager *m,const Translate *t)
: AddrSpace(m,t,IPTR_INTERNAL)
{
setFlags(hasphysical);
}
const string JoinSpace::NAME = "join";
/// This is the constructor for the \b join space, which is automatically constructed by the
/// analysis engine, and constructed only once. The name should always be \b join.
/// \param m is the associated address space manager
/// \param t is the associated processor translator
/// \param ind is the integer identifier
JoinSpace::JoinSpace(AddrSpaceManager *m,const Translate *t,int4 ind)
: AddrSpace(m,t,IPTR_JOIN,NAME,t->isBigEndian(),sizeof(uintm),1,ind,0,0,0)
{
// This is a virtual space
// setFlags(hasphysical);
clearFlags(heritaged); // This space is never heritaged, but does dead-code analysis
}
int4 JoinSpace::overlapJoin(uintb offset,int4 size,AddrSpace *pointSpace,uintb pointOffset,int4 pointSkip) const
{
if (this == pointSpace) {
// If the point is in the join space, translate the point into the piece address space
JoinRecord *pieceRecord = getManager()->findJoin(pointOffset);
int4 pos;
Address addr = pieceRecord->getEquivalentAddress(pointOffset + pointSkip, pos);
pointSpace = addr.getSpace();
pointOffset = addr.getOffset();
}
else {
if (pointSpace->getType() == IPTR_CONSTANT)
return -1;
pointOffset = pointSpace->wrapOffset(pointOffset + pointSkip);
}
JoinRecord *joinRecord = getManager()->findJoin(offset);
// Set up so we traverse pieces in data order
int4 startPiece,endPiece,dir;
if (isBigEndian()) {
startPiece = 0;
endPiece = joinRecord->numPieces();
dir = 1;
}
else {
startPiece = joinRecord->numPieces() - 1;
endPiece = -1;
dir = -1;
}
int4 bytesAccum = 0;
for(int4 i=startPiece;i!=endPiece;i += dir) {
const VarnodeData &vData(joinRecord->getPiece(i));
if (vData.space == pointSpace && pointOffset >= vData.offset && pointOffset <= vData.offset + (vData.size-1)) {
int4 res = (int4)(pointOffset - vData.offset) + bytesAccum;
if (res >= size)
return -1;
return res;
}
bytesAccum += vData.size;
}
return -1;
}
/// Encode a \e join address to the stream. This method in the interface only
/// outputs attributes for a single element, so we are forced to encode what should probably
/// be recursive elements into an attribute.
/// \param encoder is the stream encoder
/// \param offset is the offset within the address space to encode
void JoinSpace::encodeAttributes(Encoder &encoder,uintb offset) const
{
JoinRecord *rec = getManager()->findJoin(offset); // Record must already exist
encoder.writeSpace(ATTRIB_SPACE, this);
int4 num = rec->numPieces();
if (num > MAX_PIECES)
throw LowlevelError("Exceeded maximum pieces in one join address");
for(int4 i=0;i<num;++i) {
const VarnodeData &vdata( rec->getPiece(i) );
ostringstream t;
t << vdata.space->getName() << ":0x";
t << hex << vdata.offset << ':' << dec << vdata.size;
encoder.writeStringIndexed(ATTRIB_PIECE, i, t.str());
}
if (num == 1)
encoder.writeUnsignedInteger(ATTRIB_LOGICALSIZE, rec->getUnified().size);
}
/// Encode a \e join address to the stream. This method in the interface only
/// outputs attributes for a single element, so we are forced to encode what should probably
/// be recursive elements into an attribute.
/// \param encoder is the stream encoder
/// \param offset is the offset within the address space to encode
/// \param size is the size of the memory location being encoded
void JoinSpace::encodeAttributes(Encoder &encoder,uintb offset,int4 size) const
{
encodeAttributes(encoder,offset); // Ignore size
}
/// Parse the current element as a join address. Pieces of the join are encoded as a sequence
/// of ATTRIB_PIECE attributes. "piece1" corresponds to the most significant piece. The
/// Translate::findAddJoin method is used to construct a logical address within the join space.
/// \param decoder is the stream decoder
/// \param size is a reference to be filled in as the size encoded by the tag
/// \return the offset of the final address encoded by the tag
uintb JoinSpace::decodeAttributes(Decoder &decoder,uint4 &size) const
{
vector<VarnodeData> pieces;
uint4 sizesum = 0;
uint4 logicalsize = 0;
for(;;) {
uint4 attribId = decoder.getNextAttributeId();
if (attribId == 0) break;
if (attribId == ATTRIB_LOGICALSIZE) {
logicalsize = decoder.readUnsignedInteger();
continue;
}
else if (attribId == ATTRIB_UNKNOWN)
attribId = decoder.getIndexedAttributeId(ATTRIB_PIECE);
if (attribId < ATTRIB_PIECE.getId())
continue;
int4 pos = (int4)(attribId - ATTRIB_PIECE.getId());
if (pos > MAX_PIECES)
continue;
while(pieces.size() <= pos)
pieces.emplace_back();
VarnodeData &vdat( pieces[pos] );
string attrVal = decoder.readString();
string::size_type offpos = attrVal.find(':');
if (offpos == string::npos) {
const Translate *tr = getTrans();
const VarnodeData &point(tr->getRegister(attrVal));
vdat = point;
}
else {
string::size_type szpos = attrVal.find(':',offpos+1);
if (szpos==string::npos)
throw LowlevelError("join address piece attribute is malformed");
string spcname = attrVal.substr(0,offpos);
vdat.space = getManager()->getSpaceByName(spcname);
istringstream s1(attrVal.substr(offpos+1,szpos));
s1.unsetf(ios::dec | ios::hex | ios::oct);
s1 >> vdat.offset;
istringstream s2(attrVal.substr(szpos+1));
s2.unsetf(ios::dec | ios::hex | ios::oct);
s2 >> vdat.size;
}
sizesum += vdat.size;
}
JoinRecord *rec = getManager()->findAddJoin(pieces,logicalsize);
size = rec->getUnified().size;
return rec->getUnified().offset;
}
void JoinSpace::printRaw(ostream &s,uintb offset) const
{
JoinRecord *rec = getManager()->findJoin(offset);
int4 szsum = 0;
int4 num = rec->numPieces();
s << '{';
for(int4 i=0;i<num;++i) {
const VarnodeData &vdat( rec->getPiece(i) );
szsum += vdat.size;
if (i!=0)
s << ',';
vdat.space->printRaw(s,vdat.offset);
}
if (num == 1) {
szsum = rec->getUnified().size;
s << ':' << szsum;
}
s << '}';
}
uintb JoinSpace::read(const string &s,int4 &size) const
{
vector<VarnodeData> pieces;
int4 szsum = 0;
int4 i=0;
while(i < s.size()) {
pieces.emplace_back(); // Prepare to read next VarnodeData
string token;
while((i<s.size())&&(s[i]!=',')) {
token += s[i];
i += 1;
}
i += 1; // Skip the comma
try {
pieces.back() = getTrans()->getRegister(token);
}
catch(LowlevelError &err) { // Name doesn't exist
char tryShortcut = token[0];
AddrSpace *spc = getManager()->getSpaceByShortcut(tryShortcut);
if (spc == (AddrSpace *)0)
throw LowlevelError("Could not parse join string");
int4 subsize;
pieces.back().space = spc;
pieces.back().offset = spc->read(token.substr(1),subsize);
pieces.back().size = subsize;
}
szsum += pieces.back().size;
}
JoinRecord *rec = getManager()->findAddJoin(pieces,0);
size = szsum;
return rec->getUnified().offset;
}
void JoinSpace::decode(Decoder &decoder)
{
throw LowlevelError("Should never decode join space");
}
/// \param m is the address space manager
/// \param t is the processor translator
OverlaySpace::OverlaySpace(AddrSpaceManager *m,const Translate *t)
: AddrSpace(m,t,IPTR_PROCESSOR)
{
baseSpace = (AddrSpace *)0;
setFlags(overlay);
}
void OverlaySpace::decode(Decoder &decoder)
{
uint4 elemId = decoder.openElement(ELEM_SPACE_OVERLAY);
name = decoder.readString(ATTRIB_NAME);
index = decoder.readSignedInteger(ATTRIB_INDEX);
baseSpace = decoder.readSpace(ATTRIB_BASE);
decoder.closeElement(elemId);
addressSize = baseSpace->getAddrSize();
wordsize = baseSpace->getWordSize();
delay = baseSpace->getDelay();
deadcodedelay = baseSpace->getDeadcodeDelay();
calcScaleMask();
if (baseSpace->isBigEndian())
setFlags(big_endian);
if (baseSpace->hasPhysical())
setFlags(hasphysical);
}
} // End namespace ghidra