-
Notifications
You must be signed in to change notification settings - Fork 656
/
Copy pathevaluate.py
86 lines (78 loc) · 2.42 KB
/
evaluate.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
'''
Created on Apr 15, 2016
Evaluate the performance of Top-K recommendation:
Protocol: leave-1-out evaluation
Measures: Hit Ratio and NDCG
(more details are in: Xiangnan He, et al. Fast Matrix Factorization for Online Recommendation with Implicit Feedback. SIGIR'16)
@author: hexiangnan
'''
import math
import heapq # for retrieval topK
import multiprocessing
import numpy as np
from time import time
#from numba import jit, autojit
# Global variables that are shared across processes
_model = None
_testRatings = None
_testNegatives = None
_K = None
def evaluate_model(model, testRatings, testNegatives, K, num_thread):
"""
Evaluate the performance (Hit_Ratio, NDCG) of top-K recommendation
Return: score of each test rating.
"""
global _model
global _testRatings
global _testNegatives
global _K
_model = model
_testRatings = testRatings
_testNegatives = testNegatives
_K = K
hits, ndcgs = [],[]
if(num_thread > 1): # Multi-thread
pool = multiprocessing.Pool(processes=num_thread)
res = pool.map(eval_one_rating, range(len(_testRatings)))
pool.close()
pool.join()
hits = [r[0] for r in res]
ndcgs = [r[1] for r in res]
return (hits, ndcgs)
# Single thread
for idx in xrange(len(_testRatings)):
(hr,ndcg) = eval_one_rating(idx)
hits.append(hr)
ndcgs.append(ndcg)
return (hits, ndcgs)
def eval_one_rating(idx):
rating = _testRatings[idx]
items = _testNegatives[idx]
u = rating[0]
gtItem = rating[1]
items.append(gtItem)
# Get prediction scores
map_item_score = {}
users = np.full(len(items), u, dtype = 'int32')
predictions = _model.predict([users, np.array(items)],
batch_size=100, verbose=0)
for i in xrange(len(items)):
item = items[i]
map_item_score[item] = predictions[i]
items.pop()
# Evaluate top rank list
ranklist = heapq.nlargest(_K, map_item_score, key=map_item_score.get)
hr = getHitRatio(ranklist, gtItem)
ndcg = getNDCG(ranklist, gtItem)
return (hr, ndcg)
def getHitRatio(ranklist, gtItem):
for item in ranklist:
if item == gtItem:
return 1
return 0
def getNDCG(ranklist, gtItem):
for i in xrange(len(ranklist)):
item = ranklist[i]
if item == gtItem:
return math.log(2) / math.log(i+2)
return 0