-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathRBM.py
78 lines (58 loc) · 3.68 KB
/
RBM.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
#-*- coding: UTF-8 -*-
'''
Created on 20150415
@author: wangjie
'''
import numpy as np
from numpy.matlib import repmat
import Config
from Methods import sigmoid
def rbm(input_file_name, hidden_units_num, output_file_name):
train_data = np.load(input_file_name)['train_data_output']
batches_num, images_num_of_each_batch, image_pixes = train_data.shape
train_data_output = np.zeros((batches_num, images_num_of_each_batch, hidden_units_num))
visiable_weights = 0.1 * np.random.randn(image_pixes, hidden_units_num)
visiable_weights_delta = np.zeros((image_pixes, hidden_units_num))
visiable_biases = np.zeros((1, hidden_units_num))
visiable_biases_delta = np.zeros((1, hidden_units_num))
hidden_biases = np.zeros((1, image_pixes))
hidden_biases_delta = np.zeros((1, image_pixes))
#forward
positive_probablity = np.zeros((images_num_of_each_batch, hidden_units_num))
positive_product = np.zeros((image_pixes, hidden_units_num))
#forward -> backward -> forward
negative_probablity = np.zeros((images_num_of_each_batch, hidden_units_num))
negative_product = np.zeros((image_pixes, hidden_units_num))
for iteration in range(0, Config.RBM_ITERATION_NUM):
for batch in range(0, batches_num):
if iteration > 5:
momentum = Config.FINAL_MOMENTUM
else:
momentum = Config.INITIAL_MOMENTUM
data = train_data[batch, :, :]
positive_probablity = sigmoid((np.dot(data, visiable_weights) + repmat(visiable_biases, images_num_of_each_batch, 1)))
positive_probablity_states = positive_probablity > np.random.rand(images_num_of_each_batch, hidden_units_num)
negative_data = sigmoid((np.dot(positive_probablity_states, np.transpose(visiable_weights)) + \
repmat(hidden_biases, images_num_of_each_batch, 1)))
negative_probablity = sigmoid(np.exp(np.dot(negative_data, visiable_weights) +
repmat(visiable_biases, images_num_of_each_batch, 1)))
positive_product = np.dot(np.transpose(data), positive_probablity)
negative_product = np.dot(np.transpose(negative_data), negative_probablity)
positive_probablity_sum_of_rows = sum(positive_probablity)
negative_probablity_sum_of_rows = sum(negative_probablity)
data_sum_of_rows = sum(data)
negative_data_sum_of_rows = sum(negative_data)
visiable_weights_delta = momentum * visiable_weights_delta + (Config.EPSILON_WEIGHT / images_num_of_each_batch) *\
(positive_product - negative_product)
visiable_biases_delta = momentum * visiable_biases_delta + (Config.EPSILON_VISIABLE / images_num_of_each_batch) * \
(positive_probablity_sum_of_rows - negative_probablity_sum_of_rows)
hidden_biases_delta = momentum * hidden_biases_delta + (Config.EPSILON_HIDDEN / images_num_of_each_batch) * \
(data_sum_of_rows - negative_data_sum_of_rows)
visiable_weights += visiable_weights_delta
hidden_biases += hidden_biases_delta
visiable_biases += visiable_biases_delta
if iteration == Config.RBM_ITERATION_NUM - 1:
train_data_output[batch, :, :] = positive_probablity
np.savez(output_file_name, train_data_output = train_data_output, weights = visiable_weights, biases = visiable_biases)
if __name__ == '__main__':
pass