-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathgenerate.py
228 lines (173 loc) · 7.83 KB
/
generate.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
import time
import os
import torch
import torch.distributed as dist
from torch.utils.data import DataLoader, DistributedSampler
import deepspeed
import numpy as np
import json
from tqdm import tqdm
from transformers import mpu
from arguments import get_args
from data_utils.prompt_datasets import PromptDataset
from utils import print_args, initialize
from utils import print_rank, get_rank
from utils import save_rank
from utils import all_gather
from utils import get_tokenizer, get_model
torch.set_num_threads(4)
def setup_model(args, ds_config, device):
# get the model
model = get_model(args, device)
# get the optimizer and lr_scheduler
optimizer, lr_scheduler = None, None
model, _, _, _ = deepspeed.initialize(
model=model,
optimizer=optimizer,
args=args,
lr_scheduler=lr_scheduler,
mpu=mpu if args.model_parallel else None,
config_params=ds_config
)
# get the memory usage
print_rank("Model mem\n", torch.cuda.memory_summary())
return model
def setup_vllm_model(args):
from vllm import LLM, SamplingParams
model = LLM(model=args.model_path, tensor_parallel_size=args.n_gpu, dtype="float16") # `gpu_memory_utilization=0.9` by default, reduce this to avoid OOM
max_new_tokens = args.max_length - args.max_prompt_length
# --do-sample --top-k 0 --top-p 1.0 --temperature 1.0 --max-new-tokens max_new_tokens
sampling_params = SamplingParams(top_k=args.top_k, top_p=args.top_p, temperature=args.temperature,
max_tokens=max_new_tokens)
return model, sampling_params
def vllm_generate(args, model, tokenizer, sampling_params, dataset):
collate_fn = dataset.collate
dataloader = DataLoader(dataset, batch_size=args.eval_batch_size, num_workers=2, collate_fn=collate_fn)
all_gen_strs, all_idxs = [], []
for it, (model_batch, no_model_batch) in enumerate(tqdm(dataloader, desc="Generating")):
prompt = tokenizer.batch_decode(model_batch["input_ids"], skip_special_tokens=True)
outputs = model.generate(prompt, sampling_params, use_tqdm=False)
output = [preds.outputs[0].text for preds in outputs]
all_gen_strs.extend(output)
all_idxs.append(no_model_batch["idx"])
mean_lens = np.mean([len(tokenizer.encode(x)) for x in all_gen_strs[:100]])
all_idxs = torch.concatenate(all_idxs, axis=0)
log_str = f"gen | avg. lens: {mean_lens}"
print_rank(log_str)
save_rank(log_str, os.path.join(args.save, "log.txt"))
for idx, g in zip(all_idxs, all_gen_strs):
dataset.origin_data[idx]["gen_answer"] = g
with open(os.path.join(args.save, "raw.jsonl"), "w") as f:
for d in dataset.origin_data:
if "gen_answer" in d:
f.write(json.dumps(d) + "\n")
def prepare_dataset(args, tokenizer):
data = {}
data = PromptDataset(args, tokenizer, "train", data_path=args.data_dir, num=args.gen_num)
print_rank("gen num", len(data))
return data
def generate(args, tokenizer, model, dataset, device):
collate_fn = dataset.collate
if args.model_parallel:
dp_world_size = mpu.get_data_parallel_world_size()
dp_rank = mpu.get_data_parallel_rank()
dp_group = mpu.get_data_parallel_group()
else:
dp_world_size = dist.get_world_size()
dp_rank = dist.get_rank()
dp_group = None
sampler = DistributedSampler(dataset, shuffle=False, drop_last=False, rank=dp_rank, num_replicas=dp_world_size)
dataloader = DataLoader(
dataset, sampler=sampler, batch_size=args.eval_batch_size, num_workers=args.num_workers, collate_fn=collate_fn)
model.eval()
all_gen_ids = []
all_idxs = []
max_new_tokens = args.max_length - args.max_prompt_length
with torch.no_grad():
for it, (model_batch, no_model_batch) in enumerate(tqdm(dataloader, desc="Generating", disable=(dist.get_rank() != 0))):
dataset.move_to_device(model_batch, no_model_batch, device)
t_gen_out = model.generate(
**model_batch,
pad_token_id=tokenizer.pad_token_id,
eos_token_id=tokenizer.eos_token_id,
max_new_tokens=max_new_tokens,
top_k=args.top_k,
top_p=args.top_p,
temperature=args.temperature,
do_sample=True,
return_dict_in_generate=True,
output_scores=False)
full_ids = t_gen_out.sequences
gen_ids = full_ids[:, model_batch["input_ids"].size(1):]
buffer = torch.ones(gen_ids.size(0), max_new_tokens, dtype=torch.long, device=gen_ids.device) * tokenizer.pad_token_id
buffer[:, :gen_ids.size(1)] = gen_ids
all_gen_ids.append(buffer)
all_idxs.append(no_model_batch["idx"])
all_idxs = all_gather(torch.cat(all_idxs, dim=0), dim=0, world_size=dp_world_size, group=dp_group).cpu().tolist()
all_gen_ids = all_gather(torch.cat(all_gen_ids, dim=0), dim=0, world_size=dp_world_size, group=dp_group).cpu().tolist()
if get_rank() == 0:
all_gen_strs = tokenizer.batch_decode(all_gen_ids, skip_special_tokens=True)
mean_lens = np.mean([len(tokenizer.encode(x)) for x in all_gen_strs[:100]])
log_str = f"gen | avg. lens: {mean_lens}"
print_rank(log_str)
save_rank(log_str, os.path.join(args.save, "log.txt"))
assert len(all_idxs) == len(all_gen_strs)
for idx, g in zip(all_idxs, all_gen_strs):
dataset.origin_data[idx]["gen_answer"] = g
with open(os.path.join(args.save, "raw.jsonl"), "w") as f:
for d in dataset.origin_data:
if "gen_answer" in d:
f.write(json.dumps(d) + "\n")
dist.barrier()
def main():
torch.backends.cudnn.enabled = False
args = get_args()
cur_time = time.strftime("%Y-%m-%d %H:%M:%S", time.localtime())
if args.vllm:
import random
if args.save != None:
os.makedirs(args.save, exist_ok=True)
random.seed(args.seed)
np.random.seed(args.seed)
torch.manual_seed(args.seed)
print_args(args)
with open(os.path.join(args.save, "args.json"), "w") as f:
json.dump(vars(args), f)
save_rank("\n\n" + "="*30 + f" EXP at {cur_time} " + "="*30, os.path.join(args.save, "log.txt"))
tokenizer = get_tokenizer(args)
dataset = prepare_dataset(
args,
tokenizer,
)
model, sampling_params = setup_vllm_model(args)
vllm_generate(args, model, tokenizer, sampling_params, dataset)
else:
initialize(args)
# debug with debugpy
import debugpy
port = 5678 + dist.get_rank()
debugpy.listen(("0.0.0.0", port))
print(f"Waiting for debugger attach on {port}")
debugpy.wait_for_client()
if dist.get_rank() == 0:
print_args(args)
with open(os.path.join(args.save, "args.json"), "w") as f:
json.dump(vars(args), f)
device = torch.cuda.current_device()
save_rank("\n\n" + "="*30 + f" EXP at {cur_time} " + "="*30, os.path.join(args.save, "log.txt"))
with open(args.deepspeed_config, "r") as f:
ds_config = json.load(f)
ds_config["steps_per_print"] = args.gradient_accumulation_steps
ds_config["zero_optimization"]["stage"] = 0
args.fp32 = not ds_config["fp16"]["enabled"]
args.deepspeed_config = None
# get the tokenizer
tokenizer = get_tokenizer(args)
dataset = prepare_dataset(
args,
tokenizer,
)
model = setup_model(args, ds_config, device)
generate(args, tokenizer, model, dataset, device)
if __name__ == "__main__":
main()