-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathtrain.py
430 lines (390 loc) · 19.5 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
import numpy as np
import math
import random
import copy
import torch
import torch.nn as nn
import torch.utils.data
from tqdm import tqdm
from tensorboardX import SummaryWriter
from models import convert_vars_to_gpu
from utils import logsumexp, shuffle_combined, exp_lr_scheduler, get_optimizer, serialize, transform_dataset
from evaluation import compute_dcg_rankings, evaluate_model, multiple_sample_and_log_probability
from fairness_loss import GroupFairnessLoss, BaselineAshudeepGroupFairnessLoss, get_group_merits, get_group_identities
def log_and_print(model,
data_reader,
writer: SummaryWriter,
step,
name="val",
experiment_name=None,
gpu=True,
fairness_evaluation=False,
exposure_relevance_plot=False,
deterministic=True,
group_fairness_evaluation=False,
args=None):
position_bias_vector = 1. / torch.arange(1.,
100.) ** args.position_bias_power
if gpu:
position_bias_vector = position_bias_vector.cuda()
results = evaluate_model(
model,
data_reader,
deterministic=deterministic,
fairness_evaluation=fairness_evaluation,
num_sample_per_query=args.sample_size,
# position_bias_vector=1. / np.log2(2 + np.arange(200)),
position_bias_vector=position_bias_vector,
group_fairness_evaluation=group_fairness_evaluation,
track_other_disparities=args.track_other_disparities,
args=args)
"""
Evaluate
"""
if group_fairness_evaluation:
avg_group_exposure_disparity, avg_group_asym_disparity = results[
"avg_group_disparity"], results[
"avg_group_asym_disparity"]
if args.track_other_disparities:
other_disparities = results["other_disparities"]
avg_ndcg, avg_dcg, average_rank = results["ndcg"], results["dcg"], results["avg_rank"]
"""
Return
"""
returned = args.lambda_reward * avg_dcg
if args.lambda_group_fairness > 0:
returned -= args.lambda_group_fairness * avg_group_asym_disparity
"""
Print
"""
curve_pre_text = "{}_{}".format(name, args.fullinfo)
print("Step {}, Average {}: NDCG: {}, DCG {}, Average Rank {}".
format(step, curve_pre_text, avg_ndcg, avg_dcg, average_rank))
if group_fairness_evaluation:
print(
"Average {} Group Exposure disparity: {}, Group Asymmetric disparity: {}".
format(curve_pre_text, avg_group_exposure_disparity,
avg_group_asym_disparity, avg_group_asym_disparity))
"""
Log
"""
if experiment_name is None:
experiment_name = "/"
else:
experiment_name += "/"
if writer is not None:
writer.add_scalars(experiment_name + "ndcg",
{curve_pre_text: avg_ndcg}, step)
writer.add_scalars(experiment_name + "rank",
{curve_pre_text: average_rank}, step)
writer.add_scalars(experiment_name + "dcg",
{curve_pre_text: avg_dcg}, step)
writer.add_scalars(experiment_name + "metric",
{curve_pre_text: returned}, step)
if group_fairness_evaluation:
writer.add_scalars(experiment_name + "avg_group_disparity", {
curve_pre_text:
avg_group_exposure_disparity
}, step)
writer.add_scalars(experiment_name + "avg_group_asym_disparity", {
curve_pre_text:
avg_group_asym_disparity
}, step)
if args.track_other_disparities:
for k, v in other_disparities.items():
writer.add_scalars(
experiment_name + "avg_group_asym_disparity",
{curve_pre_text + "_" + k: v[0]},
step)
writer.add_scalars(
experiment_name + "avg_group_disparity",
{curve_pre_text + "_" + k: v[1]},
step)
# log on the train_dcg graph if evaluating on other training set
if "_train--TRAIN" in name:
writer.add_scalars(experiment_name + "train_dcg",
{curve_pre_text: avg_dcg}, step)
writer.add_scalars(experiment_name + "train_ndcg",
{curve_pre_text: avg_ndcg}, step)
return returned
def on_policy_training(data_reader,
validation_data_reader,
model,
writer=None,
experiment_name=None,
args=None):
other_str = "full" if args.fullinfo == "partial" else "partial"
position_bias_vector = 1. / torch.arange(1.,
100.) ** args.position_bias_power
lr = args.lr
num_epochs = args.epochs
weight_decay = args.weight_decay
sample_size = args.sample_size
entropy_regularizer = args.entropy_regularizer
print("Starting training with the following config")
print(
"Batch size {}, Learning rate {}, Weight decay {}, Entropy Regularizer {}, Entreg Decay {} Sample size {}\n"
"Lambda_reward: {}, lambda_ind_fairness:{}, lambda_group_fairness:{}".
format(args.batch_size, lr, weight_decay, args.entropy_regularizer,
args.entreg_decay, sample_size,
args.lambda_reward, args.lambda_ind_fairness,
args.lambda_group_fairness))
if args.gpu:
print("Use GPU")
model = model.cuda()
position_bias_vector = position_bias_vector.cuda()
optimizer = get_optimizer(model.parameters(), lr, args.optimizer,
weight_decay)
scheduler = torch.optim.lr_scheduler.ReduceLROnPlateau(
optimizer, mode='max', factor=args.lr_decay, min_lr=1e-6, verbose=True,
patience=6)
train_feats, train_rels = data_reader
train_dataset = torch.utils.data.TensorDataset(train_feats, train_rels)
valid_feats, valid_rels = validation_data_reader
len_train_set = len(train_feats) // args.batch_size + 1
fairness_evaluation = True if args.lambda_ind_fairness > 0.0 else False
group_fairness_evaluation = True
if group_fairness_evaluation and args.disparity_type != 'ashudeep':
with torch.no_grad():
group0_merit, group1_merit = get_group_merits(
train_feats, train_rels, args.group_feat_id, args.group_feat_threshold, mean=False)
print("Group 0 mean merit: {}, Group1 mean merit: {}".format(
group0_merit, group1_merit))
sign = 1.0 if group0_merit >= group1_merit else -1.0
if args.disparity_type != 'ashudeep_mod':
# random starting estimate for group_disparity indicator
group_disparity_indicator_batch_size = args.group_disparity_indicator_batch_size * args.batch_size
if group_disparity_indicator_batch_size > 4000:
group_disparity_indicator_batch_size = 4000
if group_disparity_indicator_batch_size < 1000:
group_disparity_indicator_batch_size = 1000
rand_ids = random.choices(
range(len(train_rels)), k=group_disparity_indicator_batch_size)
group_disp_feats = train_feats[rand_ids]
group_disp_rels = train_rels[rand_ids]
if args.gpu:
group_disp_feats, group_disp_rels = group_disp_feats.cuda(), group_disp_rels.cuda()
indicator_dataset = torch.utils.data.TensorDataset(group_disp_feats, group_disp_rels)
indicator_dataloader = torch.utils.data.DataLoader(indicator_dataset, batch_size=args.batch_size,
shuffle=True)
indicator_disparities = []
for data in indicator_dataloader:
feats, rel = data
scores = model(feats).squeeze(-1)
rankings = multiple_sample_and_log_probability(
scores, sample_size, return_prob=False, batch=True)
group_identities = get_group_identities(feats, args.group_feat_id, args.group_feat_threshold)
indicator_disparity = GroupFairnessLoss.compute_multiple_group_disparity(rankings, rel,
group_identities,
group0_merit,
group1_merit,
position_bias_vector,
args.disparity_type,
noise=args.noise,
en=args.en).mean(dim=-1)
indicator_disparities.append(indicator_disparity)
indicator_disparities = torch.cat(indicator_disparities, dim=0)
print("Disparities indicator: {}".format(indicator_disparities.mean().item()))
if args.early_stopping:
time_since_best = 0
best_metric = -1e6
best_model = None
best_epoch = None
entropy_list = []
sum_loss_list = []
rewards_list = []
fairness_loss_list = []
reward_variance_list = []
train_ndcg_list = []
train_dcg_list = []
weight_list = []
epoch_iterator = range(num_epochs)
for epoch in epoch_iterator:
train_dataloader = torch.utils.data.DataLoader(train_dataset, batch_size=args.batch_size, shuffle=True)
if args.progressbar:
train_dataloader = tqdm(train_dataloader)
for batch_id, data in enumerate(train_dataloader):
feats, rel = data
scores = model(feats).squeeze(-1)
probs = nn.functional.softmax(scores, dim=-1)
rankings, log_model_prob = multiple_sample_and_log_probability(
scores, sample_size, return_prob=True, batch=True)
with torch.no_grad():
ndcgs, dcgs = compute_dcg_rankings(rankings, rel)
utility_list = ndcgs if args.reward_type == "ndcg" else dcgs
# FAIRNESS constraints
if args.lambda_group_fairness > 0.0:
if args.unweighted_fairness:
rel = (rel > 0.0).float()
group_identities = get_group_identities(
feats, args.group_feat_id, args.group_feat_threshold)
if args.disparity_type == "ashudeep_mod":
group_fairness_coeffs = BaselineAshudeepGroupFairnessLoss.compute_group_fairness_coeffs_generic(
rankings, rel, group_identities, position_bias_vector, sign=sign)
elif args.disparity_type == "ashudeep":
group_fairness_coeffs = BaselineAshudeepGroupFairnessLoss.compute_group_fairness_coeffs_generic(
rankings, rel, group_identities, position_bias_vector)
else:
indicator_disparities, group_fairness_coeffs = GroupFairnessLoss.compute_group_fairness_coeffs_generic(
rankings, rel, group_identities,
position_bias_vector,
group0_merit,
group1_merit,
indicator_disparities,
args.disparity_type,
indicator_type=args.indicator_type,
noise=args.noise,
en=args.en)
optimizer.zero_grad()
if args.lambda_group_fairness != 0.0:
rewards = args.lambda_reward * utility_list - \
args.lambda_group_fairness * group_fairness_coeffs
else:
rewards = args.lambda_reward * utility_list
rewards = rewards / (args.lambda_reward + args.lambda_group_fairness)
baseline = 0.0
if args.use_baseline:
if args.baseline_type == "value":
baseline = rewards.mean(dim=-1, keepdim=True)
else:
raise NotImplementedError
reinforce_loss = ((rewards - baseline) * (-log_model_prob)).mean()
entropy_loss = 0.0
entropy = get_entropy(probs).mean()
if args.entropy_regularizer > 0.0:
entropy_loss = entropy_regularizer * (-entropy)
sum_loss = reinforce_loss + entropy_loss
sum_loss.backward()
optimizer.step()
# log the reward/dcg variance
sum_loss_list.append(sum_loss.item())
if args.lambda_group_fairness != 0.0:
fairness_loss_list.append(group_fairness_coeffs.mean().item())
reward_variance_list.append(utility_list.var(dim=1).mean().item())
rewards_list.append(utility_list.mean().item())
entropy_list.append(entropy.item())
train_ndcg_list.append(ndcgs.mean(dim=1).sum().item())
train_dcg_list.append(dcgs.mean(dim=1).sum().item())
weight_list.append(rel.sum().item())
step = epoch * len_train_set + batch_id
if step % args.write_losses_interval == 0 and step > 0:
"""
LOGGING
"""
weight_sum = np.sum(weight_list)
log_output = "\nAverages of last 1000 rewards: {}, ndcgs: {}, dcgs: {}".format(
np.mean(rewards_list),
np.mean(train_ndcg_list),
np.sum(train_dcg_list) / weight_sum)
if args.lambda_group_fairness > 0.0:
log_output += " disparity: {}".format(
np.mean(fairness_loss_list))
print(log_output)
if writer is not None:
writer.add_scalars(experiment_name + "/{}_sum_train_loss".format(
args.fullinfo), {"sum_loss": np.mean(sum_loss_list)}, step)
writer.add_scalars(
experiment_name + "/{}_var_reward".format(args.fullinfo),
{"var_reward": np.mean(reward_variance_list)}, step)
writer.add_scalars(
experiment_name + "/{}_entropy".format(args.fullinfo),
{"entropy": np.mean(entropy_list)}, step)
if args.lambda_group_fairness != 0.0:
writer.add_scalars(experiment_name + "/{}_fairness_loss".format(
args.fullinfo), {"fairness_loss": np.mean(fairness_loss_list)}, step)
writer.add_scalars(
experiment_name + "/{}_train_ndcg".format(args.fullinfo),
{"train_ndcg": np.mean(train_ndcg_list)}, step)
writer.add_scalars(
experiment_name + "/{}_train_dcg".format(args.fullinfo),
{"train_dcg": np.sum(train_dcg_list) / np.sum(weight_list)}, step)
fairness_loss_list = []
reward_variance_list = []
sum_loss_list = []
entropy_list = []
weight_list = []
train_ndcg_list = []
train_dcg_list = []
if step % args.evaluate_interval == 0 and step > 0:
print(
"Evaluating on validation set: iteration {}/{} of epoch {}".
format(batch_id, len_train_set, epoch))
curr_metric = log_and_print(
model,
(valid_feats, valid_rels),
writer,
step,
"TEST_full--TRAIN",
experiment_name,
args.gpu,
fairness_evaluation=fairness_evaluation,
# exposure_relevance_plot=exposure_relevance_plot,
deterministic=args.validation_deterministic,
group_fairness_evaluation=group_fairness_evaluation,
args=args)
# LR and Entropy decay
scheduler.step(curr_metric)
# """
# Early stopping
# """
if args.early_stopping:
if best_model is None or curr_metric > best_metric + abs(best_metric) * 0.0001:
best_metric = curr_metric
best_model = copy.deepcopy(model)
best_epoch = epoch
time_since_best = 0
else:
time_since_best += 1
if time_since_best >= 3:
entropy_regularizer = args.entreg_decay * entropy_regularizer
print("Decay entropy regularizer to {}".format(entropy_regularizer))
if time_since_best >= args.stop_patience:
print(
"Validation set metric hasn't increased in 10 steps. Exiting")
return best_model, best_metric
return model, curr_metric
def get_entropy(probs):
return -torch.sum(torch.log(probs + 1e-10) * probs, dim=-1)
def compute_baseline(state, type="max"):
if type == "max":
print("Depracated: Doesn't work anymore")
rel = state
max_dcg = 0.0
for i in range(sum(rel)):
max_dcg += 1.0 / math.log(2 + i)
return max_dcg
elif type == "value":
rankings, rewards_list = state
# state is sent as a set of rankings sampled using the policy and
# the set of relevant documents
return np.mean(rewards_list)
else:
print("-----No valid reward type selected-------")
def compute_multiple_log_model_probability(scores, rankings, gpu=None):
subtracts = torch.zeros_like(rankings, dtype=torch.float)
log_probs = torch.zeros_like(rankings, dtype=torch.float)
batch_index = torch.arange(rankings.size()[0])
scores = scores.squeeze(-1)
if gpu:
subtracts, log_probs = convert_vars_to_gpu([subtracts, log_probs])
batch_index = convert_vars_to_gpu(batch_index)
for j in range(rankings.size()[1]):
posj = rankings[:, j]
log_probs[:, j] = scores[posj] - logsumexp(scores - subtracts, dim=1)
subtracts[batch_index, posj] = scores[posj] + 1e6
return torch.sum(log_probs, dim=1)
def compute_log_model_probability(scores, ranking, gpu=None):
"""
more stable version
if rel is provided, use it to calculate probability only till
all the relevant documents are found in the ranking
"""
subtracts = torch.zeros_like(scores)
log_probs = torch.zeros_like(scores)
if gpu:
subtracts, log_probs = convert_vars_to_gpu([subtracts, log_probs])
for j in range(scores.size()[0]):
posj = ranking[j]
log_probs[j] = scores[posj] - logsumexp(scores - subtracts, dim=0)
subtracts[posj] = scores[posj] + 1e6
return torch.sum(log_probs)