-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathAttention_models.py
128 lines (101 loc) · 6.8 KB
/
Attention_models.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
import torch
import torch.nn as nn
import torch.nn.functional as F
from Utils import get_vocab_size
"""
From the paper:
WordLevel Attention -> SentenceLevel Attention -> TitleLevel Attention -> Final news vector
The WordAttention processes each sentence and returns a context vector for each sentence.
Then we stack the context vectors and create tensors of shape: (batch_size, num_sentences, hidden_size * num_directions).
This stacked tensor is the input to the SentenceAttention, which processes the sentence representations to generate a document representation. The document representations are then passed to the TitleAttention to generate the final representation.
"""
class WordAttention(nn.Module):
def __init__(self, embed_size, hidden_size, vocab_size, num_layers, bidirectional=True, dropout=0.5):
super(WordAttention, self).__init__()
"""
embed size: embedding dim for each words
hidden_size: # hidden features
vocab_size: typically refers to # of unique words in a sentence but the dimensions will be huge otherwise, so, we use a smaller number where embedding itself manages by replacing less frequent words with a special token like <UNK> (unknown).
num_layers: # of recurrent layers in GRU
we only use dropouts for num_layers >1
"""
self.hidden_size = hidden_size
self.num_layers = num_layers
self.bidirectional = bidirectional
self.embedding = nn.Embedding(vocab_size, embed_size)
dim = hidden_size * 2 if bidirectional else hidden_size
self.gru = nn.GRU(embed_size, hidden_size, num_layers, batch_first=True, bidirectional=bidirectional, dropout=dropout if num_layers > 1 else 0)
self.mlp = nn.Linear(dim, dim)
self.attn_score = nn.Linear(dim, 1, bias=False)
def forward(self, x, hidden_state):
embedding = self.embedding(x) # (batch_size, max_sentence_len, embed_size)
gru, hidden_state_out = self.gru(embedding, hidden_state) # (batch_size, max_sentence_len, hidden_size * num_directions), (num_directions*num_layers, batch_size, hidden_size) not sure of hidden-state
# Hidden representation u_i
u_i = torch.tanh(self.mlp(gru)) # (batch_size, max_sentence_len, hidden_size * num_directions)
# Attention scores
attn_scores = self.attn_score(u_i).squeeze(-1) # (batch_size, max_sentence_len)
# Attention weights
attn_weights = F.softmax(attn_scores, dim=1) # (batch_size, max_sentence_length)
attn_weights = attn_weights.unsqueeze(-1) # (batch_size, max_sentence_len, 1)
context_vector = torch.sum(attn_weights * gru, dim=1) # (batch_size, hidden_size * num_directions)
return context_vector, hidden_state_out
class SentenceAttention(nn.Module):
def __init__(self, hidden_size, word_hidden_size, num_layers=1, bidirectional=True, dropout=0.5):
super(SentenceAttention, self).__init__()
self.hidden_size = hidden_size
self.num_layers = num_layers
self.bidirectional = bidirectional
self.word_hidden_size = word_hidden_size
dim = hidden_size * 2 if bidirectional else hidden_size
self.gru = nn.GRU(word_hidden_size * 2, hidden_size, num_layers, batch_first=True, bidirectional=bidirectional, dropout=dropout if num_layers > 1 else 0)
self.mlp = nn.Linear(dim, dim)
self.attn_score = nn.Linear(dim, 1, bias=False)
def forward(self, x, hidden_state):
gru, hidden_state = self.gru(x, hidden_state) # (batch_size, num_sentences, hidden_size * num_directions)
u_i = torch.tanh(self.mlp(gru)) # (batch_size, num_sentences, hidden_size * num_directions)
attn_scores = self.attn_score(u_i).squeeze(-1) # (batch_size, num_sentences)
attn_weights = F.softmax(attn_scores, dim=1) # (batch_size, num_sentences)
attn_weights = attn_weights.unsqueeze(-1) # (batch_size, num_sentences, 1)
context_vector = torch.sum(attn_weights * gru, dim=1) # (batch_size, hidden_size * num_directions)
return context_vector, hidden_state
class TitleAttention(nn.Module):
def __init__(self, hidden_size, sent_hidden_size, num_classes, num_layers=1, bidirectional=True, dropout=0.5):
super(TitleAttention, self).__init__()
self.hidden_size = hidden_size
self.num_layers = num_layers
self.bidirectional = bidirectional
dim = hidden_size * 2 if bidirectional else hidden_size
self.gru = nn.GRU(sent_hidden_size * 2, hidden_size, num_layers, batch_first=True, bidirectional=bidirectional, dropout=dropout if num_layers > 1 else 0)
self.mlp = nn.Linear(dim, dim)
self.attn_score = nn.Linear(dim, 1, bias=False)
self.fc = nn.Linear(dim, num_classes)
def forward(self, x, hidden_state):
gru, hidden_state = self.gru(x, hidden_state) # (batch_size, num_titles, hidden_size * num_directions)
u_i = torch.tanh(self.mlp(gru)) # (batch_size, num_titles, hidden_size * num_directions)
attn_scores = self.attn_score(u_i).squeeze(-1) # (batch_size, num_titles)
attn_weights = F.softmax(attn_scores, dim=1) # (batch_size, num_titles)
attn_weights = attn_weights.unsqueeze(-1) # (batch_size, num_titles, 1)
context_vector = torch.sum(attn_weights * gru, dim=1) # (batch_size, hidden_size * num_directions)
output = self.fc(context_vector) # (batch_size, num_classes)
return output, hidden_state
#Debug code
# fake_news_path = r"----"
# true_news_path= r"----"
# vocab_size = get_vocab_size(fake_news_path, true_news_path)
# word_attention = WordAttention(embed_size=100, hidden_size=128, vocab_size=vocab_size, num_layers=1)
# sentence_attention = SentenceAttention(hidden_size=128, num_layers=1)
# title_attention = TitleAttention(hidden_size=128, num_layers=1)
# sample_input = torch.randint(0, vocab_size, (32, 10, 20)) # (batch_size, num_sentences, max_sentence_length)
# sentence_context_vectors = []
# for i in range(sample_input.size(1)):
# sentence = sample_input[:, i, :] # (batch_size, max_sentence_length)
# context_vector, _ = word_attention(sentence)
# sentence_context_vectors.append(context_vector)
# # Stack context vectors to form sentence representations
# sentence_context_vectors = torch.stack(sentence_context_vectors, dim=1) # (batch_size, num_sentences, hidden_size * num_directions)
# document_vector, _ = sentence_attention(sentence_context_vectors)
# title_input = document_vector.unsqueeze(1) # (batch_size, 1, hidden_size * num_directions)
# final_vector, _ = title_attention(title_input)
# print("Word vector shape:", context_vector.shape)
# print("Sentence vector shape:", document_vector.shape)
# print("Title vector shape:", final_vector.shape)