forked from baidu/DuReader
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathrun.py
189 lines (171 loc) · 7.04 KB
/
run.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
# -*- coding:utf8 -*-
# ==============================================================================
# Copyright 2017 Baidu.com, Inc. All Rights Reserved
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""
Prepares and runs the whole system.
"""
import argparse
import logging
import os
import sys
import json
import dataset
from bidaf import BiDAF
from match_lstm import MatchLstm
from yesno import OpinionClassifier
from trainer import Trainer
from inferer import Inferer
logger = logging.getLogger("paddle")
logger.setLevel(logging.INFO)
class Algos(object):
"""
Enumerates algorithms that the system supports.
"""
BIDAF = 'bidaf'
MLSTM = 'mlstm'
YESNO = 'yesno'
class Env(object):
"""
Prepares data and model.
"""
def __init__(self, args):
self.args = args
if self.args.is_infer:
logger.info("infer mode")
else:
logger.info("train mode")
self._prepare()
def _prepare(self):
if self.args.algo == Algos.BIDAF:
self._create_qa_data()
self.model = BiDAF(
Algos.BIDAF,
self.datasets[1].schema,
is_infer=self.args.is_infer,
vocab_size=self.args.vocab_size,
doc_num=self.datasets[1].doc_num,
static_emb=(self.args.pre_emb.strip() != ''),
emb_dim=self.args.emb_dim,
max_a_len=self.args.max_a_len)
elif self.args.algo == Algos.MLSTM:
self._create_qa_data()
self.model = MatchLstm(
Algos.MLSTM,
self.datasets[1].schema,
is_infer=self.args.is_infer,
vocab_size=self.args.vocab_size,
doc_num=self.datasets[1].doc_num,
static_emb=(self.args.pre_emb.strip() != ''),
emb_dim=self.args.emb_dim,
max_a_len=self.args.max_a_len)
elif self.args.algo == Algos.YESNO:
self._create_yesno_data()
self.model = OpinionClassifier(
Algos.YESNO,
self.datasets[1].schema,
is_infer=self.args.is_infer,
vocab_size=self.args.vocab_size,
static_emb=(self.args.pre_emb.strip() != ''),
doc_num=1,
emb_dim=self.args.emb_dim)
else:
raise ValueError('Illegal algo: {}'.format(self.args.algo))
def _create_qa_data(self):
if self.args.is_infer:
train_reader = None
else:
train_reader = dataset.DuReaderQA(
file_names=self.args.trainset,
vocab_file=self.args.vocab_file,
vocab_size=self.args.vocab_size,
max_p_len=self.args.max_p_len,
shuffle=(not self.args.is_infer),
preload=(not self.args.is_infer))
test_reader = dataset.DuReaderQA(
file_names=self.args.testset,
vocab_file=self.args.vocab_file,
vocab_size=self.args.vocab_size,
max_p_len=self.args.max_p_len,
shuffle=False,
is_infer=self.args.is_infer,
preload=(not self.args.is_infer))
self.datasets = [train_reader, test_reader]
def _create_yesno_data(self):
if self.args.is_infer:
train_reader = None
else:
train_reader = dataset.DuReaderYesNo(
file_names=self.args.trainset,
vocab_file=self.args.vocab_file,
vocab_size=self.args.vocab_size,
preload=True,
shuffle=True)
test_reader = dataset.DuReaderYesNo(
file_names=self.args.testset,
vocab_file=self.args.vocab_file,
vocab_size=self.args.vocab_size,
is_infer=self.args.is_infer,
preload=(not self.args.is_infer),
shuffle=False)
self.datasets = [train_reader, test_reader]
def parse_args():
"""
Parses command line arguments.
"""
parser = argparse.ArgumentParser()
parser.add_argument('--trainset', nargs='+', help='train dataset')
parser.add_argument('--testset', nargs='+', help='test dataset')
parser.add_argument('--test_period', type=int, default=10)
parser.add_argument('--vocab_file', help='dict')
parser.add_argument('--batch_size', help='batch size',
default=32, type=int)
parser.add_argument('--num_passes', type=int, default=30)
parser.add_argument('--emb_dim', help='dim of word vector',
default=300, type=int)
parser.add_argument('--vocab_size', help='vocab size',
default=-1, type=int)
parser.add_argument('--test', action='store_true', default=False)
parser.add_argument('--use_gpu', action='store_true', default=False)
parser.add_argument('--save_dir', help='save dir', default='')
parser.add_argument('--trainer_count', type=int, default=1)
parser.add_argument('--saving_period', type=int, default=100)
parser.add_argument('--pre_emb', default='')
parser.add_argument('--algo', default='bidaf', help='bidaf|mlstm|yesno')
parser.add_argument('--learning_rate', default=1e-3, type=float)
parser.add_argument('--log_period', default=10, type=int)
parser.add_argument('--l2', default=0, type=float)
parser.add_argument('--is_infer', default=False, action='store_true')
parser.add_argument('--model_file', default='')
parser.add_argument('--init_from', default='')
parser.add_argument('--max_p_len', type=int, default=500)
parser.add_argument('--max_a_len', type=int, default=200)
args = parser.parse_args()
return args
def run():
"""
Prepares and runs the whole system.
"""
args = parse_args()
logger.info('Args are: {}'.format(args))
env = Env(args)
model = env.model
datasets = env.datasets
worker = Trainer(args, model=model, datasets=datasets) \
if not args.is_infer else \
Inferer(args, model=model, datasets=datasets)
worker.start()
if __name__ == '__main__':
run()