-
Notifications
You must be signed in to change notification settings - Fork 5.1k
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
基于qwen25vl_7b_instruct lora微调后的模型推理报错KeyError: 0 #6960
Comments
llamafactory 0.9.2.dev0版本代码中会check transformers的版本要低于4.48.3,见代码:check_version("transformers>=4.41.2,<=4.48.3,!=4.46.0,!=4.46.1,!=4.46.2,!=4.46.3,!=4.47.0,!=4.47.1,!=4.48.0"); 但我看你使用的是transformers 4.49.0.dev0, 请问是手动修改了这里的代码吗? @RuoxuanYu |
export DISABLE_VERSION_CHECK=1 设置这个环境变量 |
@Cassieyy thanks! |
应该是数据集格式不对导致预处理时候丢弃了样本 |
!)按照Alpaca格式请问是哪里有问题呢@hiyouga
|
output不能为空,可以随便写点 |
好像是别的问题,我看一下 |
好的好的 |
fixed |
Reminder
System Info
llamafactory 0.9.2.dev0
datasets 3.2.0
transformers 4.49.0.dev0
Reproduction
通过shell脚本(见下)
#!/bin/bash
--设置环境变量
export DISABLE_VERSION_CHECK=1
FORCE_TORCHRUN=1 llamafactory-cli train examples/train_lora/qwen25vl_lora_infer.yaml
运行的yaml文件如下
-- model
model_name_or_path: /model/Qwen25VL_7B_Instruct
adapter_name_or_path: /saves/qwen25_vl_7b_Instruct/lora/sft
-- method
stage: sft
do_predict: true
finetuning_type: lora
-- dataset
eval_dataset: cpv_mllm_dev
template: qwen2_vl
cutoff_len: 1024
max_samples: 10000000
overwrite_cache: true
preprocessing_num_workers: 16
-- output
output_dir: saves/newqwen25vl_cpvres/lora/predict_cpv
overwrite_output_dir: true
-- eval
per_device_eval_batch_size: 1000
predict_with_generate: true
ddp_timeout: 180000000
eval_dataset数据集采用Alpaca 格式,与训练数据格式一致
[
{
"instruction": "人类指令(必填)",
"input": "人类输入(选填)",
"output": "模型回答(必填)",
"images": [
"图像路径(必填)"
]
}
]
并且dataset_info内容也有按照格式加入
"数据集名称": {
"cpv_mllm_dev": "data.json",
"columns": {
"prompt": "instruction",
"query": "input",
"response": "output",
"images": "images"
}
}
报错:[rank7]: Traceback (most recent call last):
[rank7]: File "/home/llm/0214modalllamafac/updateLLaMA-Factory-main/src/llamafactory/launcher.py", line 23, in
[rank7]: launch()
[rank7]: File "/home//llm/0214modalllamafac/updateLLaMA-Factory-main/src/llamafactory/launcher.py", line 19, in launch
[rank7]: run_exp()
[rank7]: File "/home/llm/0214modalllamafac/updateLLaMA-Factory-main/src/llamafactory/train/tuner.py", line 93, in run_exp
[rank7]: _training_function(config={"args": args, "callbacks": callbacks})
[rank7]: File "/home/llm/0214modalllamafac/updateLLaMA-Factory-main/src/llamafactory/train/tuner.py", line 67, in _training_function
[rank7]: run_sft(model_args, data_args, training_args, finetuning_args, generating_args, callbacks)
[rank7]: File "/home/llm/0214modalllamafac/updateLLaMA-Factory-main/src/llamafactory/train/sft/workflow.py", line 127, in run_sft
[rank7]: predict_results = trainer.predict(dataset_module["eval_dataset"], metric_key_prefix="predict", **gen_kwargs)
[rank7]: File "/home/.conda/envs/vlenv/lib/python3.10/site-packages/transformers/trainer_seq2seq.py", line 261, in predict
[rank7]: return super().predict(test_dataset, ignore_keys=ignore_keys, metric_key_prefix=metric_key_prefix)
[rank7]: File "/home/.conda/envs/vlenv/lib/python3.10/site-packages/transformers/trainer.py", line 4183, in predict
[rank7]: output = eval_loop(
[rank7]: File "/home/.conda/envs/vlenv/lib/python3.10/site-packages/transformers/trainer.py", line 4289, in evaluation_loop
[rank7]: for step, inputs in enumerate(dataloader):
[rank7]: File "/home/.conda/envs/vlenv/lib/python3.10/site-packages/accelerate/data_loader.py", line 552, in iter
[rank7]: current_batch = next(dataloader_iter)
[rank7]: File "/home/.conda/envs/vlenv/lib/python3.10/site-packages/torch/utils/data/dataloader.py", line 708, in next
[rank7]: data = self._next_data()
[rank7]: File "/home/.conda/envs/vlenv/lib/python3.10/site-packages/torch/utils/data/dataloader.py", line 764, in _next_data
[rank7]: data = self._dataset_fetcher.fetch(index) # may raise StopIteration
[rank7]: File "/home/.conda/envs/vlenv/lib/python3.10/site-packages/torch/utils/data/_utils/fetch.py", line 52, in fetch
[rank7]: data = [self.dataset[idx] for idx in possibly_batched_index]
[rank7]: File "/home/.conda/envs/vlenv/lib/python3.10/site-packages/torch/utils/data/_utils/fetch.py", line 52, in
[rank7]: data = [self.dataset[idx] for idx in possibly_batched_index]
[rank7]: KeyError: 0
Others
No response
The text was updated successfully, but these errors were encountered: