-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain_sintel_m1000.py
678 lines (551 loc) · 29.2 KB
/
train_sintel_m1000.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
# Author: Hirak J. Kashyap
import argparse
import matplotlib.pyplot as plt
import numpy as np
import refresh_transforms
from utils import flowlib, printlib, rotation_lib, evaluate_rpe_tum, motion_field, object_motion_lib
from models.mfg_1000mixed_sintel_model import MFG1000Mixed
from data.sintel_data import SintelDataset
import torch.backends.cudnn as cudnn
from models.PWC_SN import PWCNet # PWC net from https://github.com/sniklaus/pytorch-pwc
import loss_functions
import torch.optim
import log_tools
import csv
from tensorboardX import SummaryWriter
import torchvision
import sys
##########################################################
assert (int(torch.__version__.replace('.', '')) >= 40) # requires at least pytorch version 0.4.0
# torch.set_grad_enabled(False) # make sure to not compute gradients for computational performance
cudnn.enabled = True # make sure to use cudnn for computational performance
cudnn.benchmark = True # checks for the optimal algorithm for a fixed input size
##########################################################
parser = argparse.ArgumentParser()
np.set_printoptions(threshold=sys.maxsize)
def str2bool(v):
if v.lower() in ('yes', 'true', 't', 'y', '1'):
return True
elif v.lower() in ('no', 'false', 'f', 'n', '0'):
return False
else:
raise argparse.ArgumentTypeError('Boolean value expected.')
parser.add_argument("--data_dir", type=str, required=True, help="where the dataset is stored")
parser.add_argument("--dataset_name", type=str, choices=["virtual_kitti", "kitti_odom"], default="virtual_kitti")
parser.add_argument('--height', type=int, default=192, help="image height") #448
parser.add_argument('--width', type=int, default=512, help="image width") # 1024
parser.add_argument('--epochs', default=1, type=int, metavar='N', help='number of total epochs to run')
parser.add_argument('--log_freq', default=100, type=int, help='Log after every x frame')
parser.add_argument('--log_im_freq', default=0, type=int, help='Log image outputs after every x frame')
parser.add_argument('-b', '--batch_size', default=4, type=int, metavar='N', help='mini-batch size')
parser.add_argument('-j', '--workers', default=4, type=int, metavar='N', help='number of data loading workers')
parser.add_argument('--w_mft', type=float, default=1.0, help='Weight of translational MF reconstruction loss')
parser.add_argument('--w_mfw', type=float, default=1.0, help='Weight of rotational MF reconstruction loss')
parser.add_argument('--w_sparse', type=float, default=1.0, help='Weight of sparsity loss')
parser.add_argument('--stop', default=100000, type=int, help='Stop after number of data points')
parser.add_argument('--start', default=0, type=int, help='Start from frame number')
parser.add_argument("--shuffle", type=str2bool, nargs='?', const=True, default='n',
help="Shuffle input data.")
parser.add_argument("--train_on", type=str2bool, nargs='?', const=True, default='n',
help="Whether to train on Sintel dataset.")
parser.add_argument("--true_size", type=str2bool, nargs='?', const=True, default='n',
help="Do not resize inputs")
parser.add_argument('--lr', '--learning-rate', default=2e-4, type=float,
metavar='LR', help='initial learning rate')
parser.add_argument('--momentum', default=0.9, type=float, metavar='M',
help='momentum for sgd, alpha parameter for adam')
parser.add_argument('--weight_decay', default=0., type=float, metavar='W', help='weight decay')
parser.add_argument('--beta', default=0.999, type=float, metavar='M', help='beta parameters for adam')
parser.add_argument('--pretrained_mfg', dest='pretrained_mfg', default=None, metavar='PATH',
help='path to pre-trained MFG model')
parser.add_argument("--opt_algo", type=str, choices=["adam", "sgd"], default="adam")
parser.add_argument("--plot_data", type=str2bool, nargs='?', const=True, default='n',
help="To plot input images, flow, and depth.")
parser.add_argument("--save_data", type=str2bool, nargs='?', const=True, default='n',
help="To save data to disk")
n_iter = 0
device = torch.device("cuda") if torch.cuda.is_available() else torch.device("cpu")
def main():
args = parser.parse_args()
scale_input = refresh_transforms.Rescale(args.height, args.width)
train_drives = ['ambush_2',
'ambush_4',
'ambush_7',
'bamboo_1',
'bamboo_2',
'bandage_2',
'cave_2',
'market_2',
'market_6',
'mountain_1',
'shaman_3',
'sleeping_2',
'temple_3']
val_drives = ['alley_1', 'ambush_5', 'bandage_1', 'shaman_2', 'sleeping_1']
if args.shuffle:
print('Shuffle data ON')
global n_iter
if args.train_on:
print('Training on Sintel: ON')
else:
print('Training on Sintel: OFF')
print('sparsity coeff:', args.w_sparse)
print('learning rate:', args.lr)
print('batch_size:', args.batch_size)
print('momentum:', args.momentum)
print('weight decay: ', args.weight_decay)
print('train drives:', train_drives)
print('validation drives:', val_drives)
# load pretrained optic flow network PWCNet
# pwc downscales by 4 times, change to 1.0 if flow GT is used instead
args.downscale_f = 4.0
flow_model = PWCNet().to(device)
flow_parameters_file = 'pretrained_param/sintel_flow.pytorch'
flow_parameters = torch.load(flow_parameters_file)
if 'state_dict' in flow_parameters.keys():
flow_model.load_state_dict(flow_parameters['state_dict'])
else:
# This is executed
flow_model.load_state_dict(flow_parameters)
flow_model = torch.nn.DataParallel(flow_model)
flow_model.eval()
# Initialize MFG model
mf_model = MFG1000Mixed(round(args.height/args.downscale_f), round(args.width/args.downscale_f)).to(device)
if args.pretrained_mfg:
print(" ######### Using pretrained weights for MFG net #########")
pretrained_model = torch.load(args.pretrained_mfg)
mf_model.load_state_dict(pretrained_model['state_dict'])
pretrained_epoch = pretrained_model['epoch']
else:
if not args.train_on:
print('Pretrained network not provided for validation, exiting!')
sys.exit()
else:
mf_model.init_weights()
pretrained_epoch = 0
args.epochs += pretrained_epoch
mf_model = torch.nn.DataParallel(mf_model)
if args.train_on:
mf_model.train()
optim_params = [
{'params': mf_model.parameters(), 'lr': args.lr}
]
if args.opt_algo == 'adam':
optimizer = torch.optim.Adam(optim_params,
betas=(args.momentum, args.beta),
weight_decay=args.weight_decay)
print('adam solver is set, now training ...')
if args.opt_algo == 'sgd':
optimizer = torch.optim.SGD(optim_params,
momentum=args.momentum,
weight_decay=args.weight_decay)
print('SGD solver is set, now training ...')
# create a handler object for the training dataset
data_to_train = SintelDataset(dataset_dir=args.data_dir,
drives=train_drives,
transform=refresh_transforms.Compose([scale_input,
refresh_transforms.ArrayToTensor()]))
print('training data size: ', data_to_train.num_samples, ' frames')
train_data_loader = torch.utils.data.DataLoader(data_to_train,
batch_size=args.batch_size,
shuffle=args.shuffle,
num_workers=args.workers,
pin_memory=True,
drop_last=True)
else:
mf_model.eval()
torch.set_grad_enabled(False)
print('MF-model parameters: ', sum(p.numel() for p in mf_model.parameters()))
save_path = log_tools.save_path_formatter_sintel(args, parser)
args.save_path = '/data/motion/smd/train_sintel'/ save_path
print('=> will save everything to {}'.format(args.save_path))
args.save_path.makedirs_p()
training_writer = SummaryWriter(args.save_path)
with open(args.save_path / 'test_RPE_summary.csv', 'a') as csvfile:
writer = csv.writer(csvfile, delimiter='\t')
writer.writerow(['epoch', '-----drive-------', '-----trans error mean ------',
'-----rot error mean-----', '-----trans error std ------', '-----rot error std-----'])
best_val_error = sys.maxsize
for epoch in range(args.epochs - pretrained_epoch):
cum_epoch = 0
if args.train_on and len(train_drives) > 0:
train_loss = train(train_data_loader, flow_model, mf_model, args, optimizer, training_writer)
train_loss = train_loss / data_to_train.num_samples
print('epoch ', epoch, ' --- training loss: ', train_loss)
cum_epoch = epoch + 1 + pretrained_epoch
else:
cum_epoch = pretrained_epoch
# create a handler object for the validation dataset
n_active_list_alldrive = []
for i_drive, drive in enumerate(val_drives):
data_to_validate = SintelDataset(dataset_dir=args.data_dir,
drives=[drive],
transform=refresh_transforms.Compose([scale_input,
refresh_transforms.ArrayToTensor()]))
val_data_loader = torch.utils.data.DataLoader(data_to_validate,
batch_size=1,
shuffle=False,
num_workers=args.workers,
pin_memory=True,
drop_last=False)
terror_mean, terror_std, rerror_mean, rerror_std, epe, n_active_list_drive = validate(val_data_loader, flow_model, mf_model, args, drive, data_to_validate.num_samples)
with open(args.save_path / 'test_RPE_summary.csv', 'a') as csvfile:
writer = csv.writer(csvfile, delimiter='\t')
writer.writerow(
[cum_epoch, drive, terror_mean, rerror_mean, terror_std, rerror_std])
n_active_list_alldrive.extend(n_active_list_drive)
training_writer.add_scalar('val trans loss {}'.format(drive), terror_mean, cum_epoch)
training_writer.add_scalar('val rot loss {}'.format(drive), rerror_mean, cum_epoch)
if best_val_error > terror_mean:
best_val_error = terror_mean
log_tools.save_checkpoint_ccp(
args.save_path, {
'epoch': epoch + 1 + pretrained_epoch,
'state_dict': mf_model.module.state_dict()
}, True)
@torch.no_grad()
def validate(val_data_loader, flow_model, mf_model, args, drive, num_samples):
# plt.rcParams.update({'font.size': 10})
# fig = plt.figure(1)
mf_h = round(args.height/args.downscale_f)
mf_w = round(args.width/args.downscale_f)
planar_depth = torch.ones(1, 1, mf_h, mf_w).to(device)
n_active_neurons_list = []
np.set_printoptions(precision=6, suppress=True)
epe_drive = 0.0
# run training for one epoch
with torch.no_grad():
poses_est = np.zeros((num_samples + 1, 6))
poses_gt = np.zeros((num_samples + 1, 6))
poses_mf = np.zeros((num_samples + 1, 6))
times = np.zeros((num_samples + 1, 1))
for i_batch, sample_batch in enumerate(val_data_loader):
if i_batch < args.start:
continue
if i_batch > args.stop:
print('Stopped after', args.stop, 'frames!')
break
# we do not need RGB for training
times[i_batch + 1, :] = sample_batch['id']
image_t = sample_batch['img_t'].to(device)
image_tplus1 = sample_batch['img_tplus1'].to(device)
# we need only flow for training, setting any nan entry to zero
flow_gt = sample_batch['flow'].to(device)
invalid = torch.isnan(flow_gt[:, 0, :, :]) + torch.isnan(flow_gt[:, 1, :, :])
flow_gt[torch.stack((invalid, invalid), 1)] = 0.0
flow_pwc = flow_model(image_t, image_tplus1)
# we need the depth and pose GT only for validation
depth_gt = sample_batch['depth'].to(device)
pose_gt_r = sample_batch['pose_r'].to(device)
pose_gt_t = sample_batch['pose_t'].to(device)
# because pwc downscales by 4.0
K = sample_batch['K'].float().to(device)
fx = K[0, 0, 0] / args.downscale_f
fy = K[0, 1, 1] / args.downscale_f
A, B = motion_field.motion_mat_fxfy(mf_h, mf_w, fx, fy)
mfg_output = mf_model(flow_pwc)
pred_t_mf = mfg_output['t_mf']
pred_r_mf = mfg_output['r_mf']
latent_activations = torch.squeeze(mfg_output['out_conv5']).view(args.batch_size, -1)
mft_gt = torch.zeros(args.batch_size, 2, mf_h, mf_w).cuda()
mfw_gt = torch.zeros(args.batch_size, 2, mf_h, mf_w).cuda()
t = pose_gt_t[0, :].contiguous().view(-1, 1)
w = pose_gt_r[0, :].contiguous().view(-1, 1)
vtx, vty, vwx, vwy = motion_field.gen_motion_field(t, 1 * w, torch.squeeze(planar_depth), A, B)
mft_gt[0, 0, :, :] = vtx * fx
mft_gt[0, 1, :, :] = vty * fy
mfw_gt[0, 0, :, :] = vwx * fx
mfw_gt[0, 1, :, :] = vwy * fy
t_est = motion_field.est_translation(torch.squeeze(planar_depth[0, 0, :, :]), A, pred_t_mf[0, 0, :, :] / fx,
pred_t_mf[0, 1, :, :] / fy)
r_est = motion_field.est_rotation(B, pred_r_mf[0, 0, :, :] / fx, pred_r_mf[0, 1, :, :] / fy)
t_est_mf = motion_field.est_translation(torch.squeeze(planar_depth[0, 0, :, :]), A, mft_gt[0, 0, :, :] / fx,
mft_gt[0, 1, :, :] / fy)
r_est_mf = motion_field.est_rotation(B, mfw_gt[0, 0, :, :] / fx, mfw_gt[0, 1, :, :] / fy)
poses_est[i_batch + 1, :] = np.append(t_est.cpu().numpy(), r_est.cpu().numpy())
poses_gt[i_batch + 1, :] = np.append(pose_gt_t.cpu().numpy(), pose_gt_r.cpu().numpy())
poses_mf[i_batch + 1, :] = np.append(t_est_mf.cpu().numpy(), r_est_mf.cpu().numpy())
if args.plot_data:
epe_batch, n_active_neurons_batch = plot_minibatch(i_batch, sample_batch, flow_gt, flow_pwc, depth_gt, mft_gt, mfw_gt, pred_t_mf, pred_r_mf,
latent_activations)
epe_drive += epe_batch
n_active_neurons_list.append(n_active_neurons_batch)
save_gt_pose_dir = args.save_path / drive / 'ground_truth'
save_pred_pose_dir = args.save_path / drive / 'ours_prediction'
save_mf_pose_dir = args.save_path / drive / 'mf'
save_gt_pose_dir.makedirs_p()
save_pred_pose_dir.makedirs_p()
save_mf_pose_dir.makedirs_p()
gt_file = save_gt_pose_dir / (drive+'.txt')
pred_file = save_pred_pose_dir / (drive+'.txt')
mf_file = save_mf_pose_dir / (drive+'.txt')
rotation_lib.dump_pose_seq_cont(gt_file, poses_gt, times)
rotation_lib.dump_pose_seq_cont(pred_file, poses_est, times)
rotation_lib.dump_pose_seq_cont(mf_file, poses_mf, times)
terror_mean, terror_std, rerror_mean, rerror_std = evaluate_rpe_tum.rpe_fun(gt_file, pred_file)
# terror_mf_mean, terror_mf_std, rerror_mf_mean, rerror_mf_std = evaluate_rpe_tum.rpe_fun(gt_file, mf_file)
return terror_mean, terror_std, rerror_mean, rerror_std, epe_drive, n_active_neurons_list
def train(train_data_loader, flow_model, mf_model, args, optimizer, training_writer):
global n_iter
train_loss = 0
mf_h = round(args.height/args.downscale_f)
mf_w = round(args.width/args.downscale_f)
planar_depth = torch.ones(1, 1, mf_h, mf_w).to(device)
plt.rcParams.update({'font.size': 10})
fig = plt.figure(1)
# run training for one epoch
for i_batch, sample_batch in enumerate(train_data_loader):
if i_batch * args.batch_size < args.start:
continue
if i_batch * args.batch_size > args.stop:
print('Stopped after', args.stop, 'frames!')
break
# we do not need RGB for training
image_t = sample_batch['img_t'].to(device)
# we need only flow for training, setting any nan entry to zero
flow_gt = sample_batch['flow'].to(device)
invalid = torch.isnan(flow_gt[:, 0, :, :]) + torch.isnan(flow_gt[:, 1, :, :])
flow_gt[torch.stack((invalid, invalid), 1)] = 0.0
image_tplus1 = sample_batch['img_tplus1'].to(device)
flow_pwc = flow_model(image_t, image_tplus1)
# we need the depth and pose GT only for validation
depth_gt = sample_batch['depth'].to(device)
pose_gt_r = sample_batch['pose_r'].to(device)
pose_gt_t = sample_batch['pose_t'].to(device)
# because pwc downscales by 4.0
K = sample_batch['K'].float().to(device)
fx = K[0, 0, 0]/args.downscale_f
fy = K[0, 1, 1]/args.downscale_f
inflow = flow_pwc.detach().clone()
mfg_output = mf_model(inflow)
pred_t_mf = mfg_output['t_mf']
pred_r_mf = mfg_output['r_mf']
latent_activations = torch.squeeze(mfg_output['out_conv5']).view(args.batch_size, -1)
mft_gt = torch.zeros(args.batch_size, 2, mf_h, mf_w).cuda()
mfw_gt = torch.zeros(args.batch_size, 2, mf_h, mf_w).cuda()
mft_loss = torch.zeros(args.batch_size, 1)
mfw_loss = torch.zeros(args.batch_size, 1)
sparsity_loss = torch.zeros(args.batch_size, 1)
scale_t_loss = torch.zeros(args.batch_size, 1)
scale_w_loss = torch.zeros(args.batch_size, 1)
A, B = motion_field.motion_mat_fxfy(mf_h, mf_w, fx, fy)
for im in range(args.batch_size):
t = pose_gt_t[im, :].contiguous().view(-1, 1)
# Convert right hand to left hand coordinates
w = pose_gt_r[im, :].contiguous().view(-1, 1)
vtx, vty, vwx, vwy = motion_field.gen_motion_field(t, 1 * w, torch.squeeze(planar_depth), A, B)
mft_gt[im, 0, :, :] = vtx * fx
mft_gt[im, 1, :, :] = vty * fy
mfw_gt[im, 0, :, :] = vwx * fx
mfw_gt[im, 1, :, :] = vwy * fy
# MF reconstruction scale factor
scale_t_loss[im, 0] = (torch.norm(mfw_gt[im, :, :, :], 2) / torch.norm(mft_gt[im, :, :, :], 2)).clamp(min=1, max=100)
scale_w_loss[im, 0] = (torch.norm(mft_gt[im, :, :, :], 2) / torch.norm(mfw_gt[im, :, :, :], 2)).clamp(min=1, max=100)
# MF reconstruction loss
mft_loss[im, 0] = loss_functions.mf_loss_fun(pred_t_mf[im, :, :, :], mft_gt[im, :, :, :])
mfw_loss[im, 0] = loss_functions.mf_loss_fun(pred_r_mf[im, :, :, :], mfw_gt[im, :, :, :])
# Sparsity constraint loss
sparsity_loss[im, 0] = loss_functions.sparsity_loss_gen_sigmoid(latent_activations[im, :])
total_loss = torch.sum(scale_t_loss * mft_loss + scale_w_loss * mfw_loss + args.w_sparse * sparsity_loss)
if torch.isnan(total_loss):
print('loss is nan', n_iter)
sys.exit()
else:
optimizer.zero_grad()
total_loss.backward()
optimizer.step()
batch_sparsity_loss = torch.sum(sparsity_loss).item()
batch_mft_loss = torch.sum(mft_loss).item()
batch_mfw_loss = torch.sum(mfw_loss).item()
batch_total_loss = torch.sum(total_loss).item()
if args.log_freq > 0 and n_iter % args.log_freq == 0:
training_writer.add_scalar('batch_translational_mf_loss', batch_mft_loss, n_iter)
training_writer.add_scalar('batch_rotational_mf_loss', batch_mfw_loss, n_iter)
training_writer.add_scalar('batch_sparsity_loss', batch_sparsity_loss, n_iter)
if args.log_im_freq > 0 and n_iter % args.log_im_freq == 0:
with torch.no_grad():
true_mf_t_array = flowlib.flow_to_image(
printlib.gputensor2array(mft_gt[0, :, :, :])).transpose(2, 0, 1)
true_mf_w_array = flowlib.flow_to_image(
printlib.gputensor2array(mfw_gt[0, :, :, :])).transpose(2, 0, 1)
pred_mft_tplus1 = pred_t_mf
pred_mfw_tplus1 = pred_r_mf
pred_mf_t_array = flowlib.flow_to_image(
printlib.gputensor2array(pred_mft_tplus1[0, :, :, :])).transpose(2, 0, 1)
pred_mf_w_array = flowlib.flow_to_image(
printlib.gputensor2array(pred_mfw_tplus1[0, :, :, :])).transpose(2, 0, 1)
training_writer.add_image('Translational-mf: True v. Predicted',
torchvision.utils.make_grid(
[torch.tensor(true_mf_t_array),
torch.tensor(pred_mf_t_array)]), n_iter)
training_writer.add_image('Rotational-mf: True v. Predicted',
torchvision.utils.make_grid(
[torch.tensor(true_mf_w_array), torch.tensor(pred_mf_w_array)]), n_iter)
flow_array = flowlib.flow_to_image(
printlib.gputensor2array(flow_gt[0, :, :, :])).transpose(2, 0, 1)
inflow_array = flowlib.flow_to_image(
printlib.gputensor2array(inflow[0, :, :, :])).transpose(2, 0, 1)
training_writer.add_image('GT flow',
torchvision.utils.make_grid(
[torch.tensor(flow_array)]), n_iter)
training_writer.add_image('PWC flow',
torchvision.utils.make_grid(
[torch.tensor(torch.tensor(inflow_array))]), n_iter)
del pred_mft_tplus1, pred_mfw_tplus1
del pred_t_mf, pred_r_mf, mft_gt, mfw_gt, depth_gt, mfg_output, flow_gt, flow_pwc
train_loss += batch_total_loss
n_iter += 1
return train_loss
@torch.no_grad()
def plot_minibatch(i_batch, sample_batch, flow_gt, flow_pwc, depth_gt, mft_gt, mfw_gt, mft_pred, mfw_pred, latent_activations):
import cv2
images = sample_batch['img_t']
mst_mixed_inv = (latent_activations).cpu().reshape(-1, 1, 25, 40)
epe_batch = 0.0
n_active_neurons = 0
for im in range(images.size(0)):
depth_gt_im = depth_gt[im, 0, :, :].cpu().numpy()
depth_gt_im = cv2.resize(depth_gt_im, (mft_gt.size(3), mft_gt.size(2)), interpolation=cv2.INTER_AREA)
depth_gt_im = torch.tensor(depth_gt_im).cuda()
mf_gt = (mft_gt[im, :, :, :] / depth_gt_im) + mfw_gt[im, :, :, :]
mf_gt[:, depth_gt_im < 1e-5] = 0.0
mf_pred = (mft_pred[im, :, :, :] / depth_gt_im) + mfw_pred[im, :, :, :]
mf_pred[:, depth_gt_im < 1e-5] = 0.0
flow_gt_im = refresh_transforms.rescale_flow(flow_gt[im], mf_gt.size(1), mf_gt.size(2)).to(device)
invalid = torch.isnan(flow_gt_im[0, :, :]) + torch.isnan(flow_gt_im[1, :, :])
obj_2d_gt = flow_gt_im - mf_gt
obj_2d_pred = flow_gt_im - mf_pred
th = 0.5
object_mask_gt = object_motion_lib.find_object_mask_sintel(obj_2d_gt, invalid, th)
object_scene_2d_gt = obj_2d_gt * torch.stack((object_mask_gt.float(), object_mask_gt.float()))
object_mask_pred = object_motion_lib.find_object_mask_sintel(obj_2d_pred, invalid, th)
object_scene_2d_pred = obj_2d_pred * torch.stack((object_mask_pred.float(), object_mask_pred.float()))
plt.clf()
plt.suptitle(str(i_batch * images.size(0) + im), fontsize=16)
pl = plt.subplot(6, 4, 1)
pl.imshow(printlib.cputensor2array(images[im, :, :, :]))
pl.set_title("t")
pl.set_xticks([])
pl.set_yticks([])
fl = plt.subplot(6, 4, 5)
img = flowlib.flow_to_image(printlib.gputensor2array(flow_gt[im]))
fl.imshow(img)
fl.set_title("GT Flow")
fl.set_xticks([])
fl.set_yticks([])
fl = plt.subplot(6, 4, 6)
img = flowlib.flow_to_image(printlib.gputensor2array(flow_pwc[im]*4))
fl.imshow(img)
fl.set_title("PWC Flow")
fl.set_xticks([])
fl.set_yticks([])
dm = plt.subplot(6, 4, 9)
# dm.imshow(printlib.gpudepth2invarray(depth_t[im, :, :]))
dm.imshow(torch.squeeze(depth_gt[im, :, :]).cpu().numpy(), cmap='hot')
# hist, bin_edges = np.histogram(torch.squeeze(depth_t[im, :, :]).cpu().numpy(), bins=100)
# dm.bar(bin_edges[:-1], hist, width=1)
# #mask = depthmap < 0.5
# #dm.imshow(mask)
dm.set_title("Depth map t")
dm.set_xticks([])
dm.set_yticks([])
fl = plt.subplot(6, 4, 3)
img = flowlib.flow_to_image(printlib.gputensor2array(mf_gt))
fl.imshow(img)
fl.set_title("GT MF")
fl.set_xticks([])
fl.set_yticks([])
fl = plt.subplot(6, 4, 4)
img = flowlib.flow_to_image(printlib.gputensor2array(mf_pred))
fl.imshow(img)
fl.set_title("Predicted MF")
fl.set_xticks([])
fl.set_yticks([])
fl = plt.subplot(6, 4, 7)
img = flowlib.flow_to_image(printlib.gputensor2array(mft_gt[im, :, :, :]))
fl.imshow(img)
fl.set_title("GT MF-t")
fl.set_xticks([])
fl.set_yticks([])
fl = plt.subplot(6, 4, 8)
img = flowlib.flow_to_image(printlib.gputensor2array(mft_pred[im, :, :, :]))
fl.imshow(img)
fl.set_title("Predicted MF-t")
fl.set_xticks([])
fl.set_yticks([])
fl = plt.subplot(6, 4, 11)
img = flowlib.flow_to_image(printlib.gputensor2array(mfw_gt[im, :, :, :]))
fl.imshow(img)
fl.set_title("GT MF-w")
fl.set_xticks([])
fl.set_yticks([])
fl = plt.subplot(6, 4, 12)
img = flowlib.flow_to_image(printlib.gputensor2array(mfw_pred[im, :, :, :]))
fl.imshow(img)
fl.set_title("Predicted MF-w")
fl.set_xticks([])
fl.set_yticks([])
fl = plt.subplot(6, 4, 15)
img = flowlib.flow_to_image(printlib.gputensor2array(obj_2d_gt))
fl.imshow(img)
fl.set_title("GT Object Res")
fl.set_xticks([])
fl.set_yticks([])
fl = plt.subplot(6, 4, 16)
img = flowlib.flow_to_image(printlib.gputensor2array(obj_2d_pred))
fl.imshow(img)
fl.set_title("Predicted Object Res")
fl.set_xticks([])
fl.set_yticks([])
act = plt.subplot(6, 4, 18)
img = np.squeeze(mst_mixed_inv[im, :, :, :])
act.imshow(img, cmap='gray')
act.set_title("Latent activations")
act.set_xticks([])
act.set_yticks([])
n_active_neurons += round(torch.sum(img > 0.01).item())
pl = plt.subplot(6, 4, 19)
mask = object_mask_gt.cpu().numpy()
masked = np.ma.masked_where(mask == 0, mask)
img = printlib.cputensor2array(refresh_transforms.rescale_img(images[im, :, :, :], mask.shape[0], mask.shape[1]))
pl.imshow(img, interpolation='none')
pl.imshow(masked, 'hsv', interpolation='none', alpha=0.5)
#pl.imshow(object_mask_gt, cmap='gray')
pl.set_xticks([])
pl.set_yticks([])
pl.set_title("GT object mask")
pl = plt.subplot(6, 4, 20)
mask = object_mask_pred.cpu().numpy()
masked = np.ma.masked_where(mask == 0, mask)
img = printlib.cputensor2array(
refresh_transforms.rescale_img(images[im, :, :, :], mask.shape[0], mask.shape[1]))
pl.imshow(img, interpolation='none')
pl.imshow(masked, 'hsv', interpolation='none', alpha=0.5)
# pl.imshow(object_mask_gt, cmap='gray')
pl.set_xticks([])
pl.set_yticks([])
pl.set_title("Pred object mask")
fl = plt.subplot(6, 4, 23)
img = flowlib.flow_to_image(printlib.gputensor2array(object_scene_2d_gt))
fl.imshow(img)
fl.set_title("GT scene object")
fl.set_xticks([])
fl.set_yticks([])
fl = plt.subplot(6, 4, 24)
img = flowlib.flow_to_image(printlib.gputensor2array(object_scene_2d_pred))
fl.imshow(img)
fl.set_title("Pred scene object")
fl.set_xticks([])
fl.set_yticks([])
tu = object_scene_2d_gt[0].cpu().numpy()
tv = object_scene_2d_gt[1].cpu().numpy()
u = object_scene_2d_pred[0].cpu().numpy()
v = object_scene_2d_pred[1].cpu().numpy()
epe = flowlib.flow_error(tu, tv, u, v)
# print('epe: ', epe, ' #active neurons: ', n_active_neurons)
epe_batch += epe
plt.draw()
plt.pause(5)
return epe_batch, n_active_neurons
if __name__ == "__main__":
main()