forked from AbnerHqC/GaitSet
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmodel.py
272 lines (232 loc) · 10.6 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
import math
import os
import os.path as osp
import random
import sys
from datetime import datetime
import numpy as np
import torch
import torch.nn as nn
import torch.autograd as autograd
import torch.optim as optim
import torch.utils.data as tordata
from .network import TripletLoss, SetNet
from .utils import TripletSampler
class Model:
def __init__(self,
hidden_dim,
lr,
hard_or_full_trip,
margin,
num_workers,
batch_size,
restore_iter,
total_iter,
save_name,
train_pid_num,
frame_num,
model_name,
train_source,
test_source,
img_size=64):
self.save_name = save_name
self.train_pid_num = train_pid_num
self.train_source = train_source
self.test_source = test_source
self.hidden_dim = hidden_dim
self.lr = lr
self.hard_or_full_trip = hard_or_full_trip
self.margin = margin
self.frame_num = frame_num
self.num_workers = num_workers
self.batch_size = batch_size
self.model_name = model_name
self.P, self.M = batch_size
self.restore_iter = restore_iter
self.total_iter = total_iter
self.img_size = img_size
self.encoder = SetNet(self.hidden_dim).float()
self.encoder = nn.DataParallel(self.encoder)
self.triplet_loss = TripletLoss(self.P * self.M, self.hard_or_full_trip, self.margin).float()
self.triplet_loss = nn.DataParallel(self.triplet_loss)
self.encoder.cuda()
self.triplet_loss.cuda()
self.optimizer = optim.Adam([
{'params': self.encoder.parameters()},
], lr=self.lr)
self.hard_loss_metric = []
self.full_loss_metric = []
self.full_loss_num = []
self.dist_list = []
self.mean_dist = 0.01
self.sample_type = 'all'
def collate_fn(self, batch):
batch_size = len(batch)
feature_num = len(batch[0][0])
seqs = [batch[i][0] for i in range(batch_size)]
frame_sets = [batch[i][1] for i in range(batch_size)]
view = [batch[i][2] for i in range(batch_size)]
seq_type = [batch[i][3] for i in range(batch_size)]
label = [batch[i][4] for i in range(batch_size)]
batch = [seqs, view, seq_type, label, None]
def select_frame(index):
sample = seqs[index]
frame_set = frame_sets[index]
if self.sample_type == 'random':
frame_id_list = random.choices(frame_set, k=self.frame_num)
_ = [feature.loc[frame_id_list].values for feature in sample]
else:
_ = [feature.values for feature in sample]
return _
seqs = list(map(select_frame, range(len(seqs))))
if self.sample_type == 'random':
seqs = [np.asarray([seqs[i][j] for i in range(batch_size)]) for j in range(feature_num)]
else:
gpu_num = min(torch.cuda.device_count(), batch_size)
batch_per_gpu = math.ceil(batch_size / gpu_num)
batch_frames = [[
len(frame_sets[i])
for i in range(batch_per_gpu * _, batch_per_gpu * (_ + 1))
if i < batch_size
] for _ in range(gpu_num)]
if len(batch_frames[-1]) != batch_per_gpu:
for _ in range(batch_per_gpu - len(batch_frames[-1])):
batch_frames[-1].append(0)
max_sum_frame = np.max([np.sum(batch_frames[_]) for _ in range(gpu_num)])
seqs = [[
np.concatenate([
seqs[i][j]
for i in range(batch_per_gpu * _, batch_per_gpu * (_ + 1))
if i < batch_size
], 0) for _ in range(gpu_num)]
for j in range(feature_num)]
seqs = [np.asarray([
np.pad(seqs[j][_],
((0, max_sum_frame - seqs[j][_].shape[0]), (0, 0), (0, 0)),
'constant',
constant_values=0)
for _ in range(gpu_num)])
for j in range(feature_num)]
batch[4] = np.asarray(batch_frames)
batch[0] = seqs
return batch
def fit(self):
if self.restore_iter != 0:
self.load(self.restore_iter)
self.encoder.train()
self.sample_type = 'random'
for param_group in self.optimizer.param_groups:
param_group['lr'] = self.lr
triplet_sampler = TripletSampler(self.train_source, self.batch_size)
train_loader = tordata.DataLoader(
dataset=self.train_source,
batch_sampler=triplet_sampler,
collate_fn=self.collate_fn,
num_workers=self.num_workers)
train_label_set = list(self.train_source.label_set)
train_label_set.sort()
_time1 = datetime.now()
for seq, view, seq_type, label, batch_frame in train_loader:
self.restore_iter += 1
self.optimizer.zero_grad()
for i in range(len(seq)):
seq[i] = self.np2var(seq[i]).float()
if batch_frame is not None:
batch_frame = self.np2var(batch_frame).int()
feature, label_prob = self.encoder(*seq, batch_frame)
target_label = [train_label_set.index(l) for l in label]
target_label = self.np2var(np.array(target_label)).long()
triplet_feature = feature.permute(1, 0, 2).contiguous()
triplet_label = target_label.unsqueeze(0).repeat(triplet_feature.size(0), 1)
(full_loss_metric, hard_loss_metric, mean_dist, full_loss_num
) = self.triplet_loss(triplet_feature, triplet_label)
if self.hard_or_full_trip == 'hard':
loss = hard_loss_metric.mean()
elif self.hard_or_full_trip == 'full':
loss = full_loss_metric.mean()
self.hard_loss_metric.append(hard_loss_metric.mean().data.cpu().numpy())
self.full_loss_metric.append(full_loss_metric.mean().data.cpu().numpy())
self.full_loss_num.append(full_loss_num.mean().data.cpu().numpy())
self.dist_list.append(mean_dist.mean().data.cpu().numpy())
if loss > 1e-9:
loss.backward()
self.optimizer.step()
if self.restore_iter % 1000 == 0:
print(datetime.now() - _time1)
_time1 = datetime.now()
if self.restore_iter % 100 == 0:
self.save()
print('iter {}:'.format(self.restore_iter), end='')
print(', hard_loss_metric={0:.8f}'.format(np.mean(self.hard_loss_metric)), end='')
print(', full_loss_metric={0:.8f}'.format(np.mean(self.full_loss_metric)), end='')
print(', full_loss_num={0:.8f}'.format(np.mean(self.full_loss_num)), end='')
self.mean_dist = np.mean(self.dist_list)
print(', mean_dist={0:.8f}'.format(self.mean_dist), end='')
print(', lr=%f' % self.optimizer.param_groups[0]['lr'], end='')
print(', hard or full=%r' % self.hard_or_full_trip)
sys.stdout.flush()
self.hard_loss_metric = []
self.full_loss_metric = []
self.full_loss_num = []
self.dist_list = []
# Visualization using t-SNE
# if self.restore_iter % 500 == 0:
# pca = TSNE(2)
# pca_feature = pca.fit_transform(feature.view(feature.size(0), -1).data.cpu().numpy())
# for i in range(self.P):
# plt.scatter(pca_feature[self.M * i:self.M * (i + 1), 0],
# pca_feature[self.M * i:self.M * (i + 1), 1], label=label[self.M * i])
#
# plt.show()
if self.restore_iter == self.total_iter:
break
def ts2var(self, x):
return autograd.Variable(x).cuda()
def np2var(self, x):
return self.ts2var(torch.from_numpy(x))
def transform(self, flag, batch_size=1):
self.encoder.eval()
source = self.test_source if flag == 'test' else self.train_source
self.sample_type = 'all'
data_loader = tordata.DataLoader(
dataset=source,
batch_size=batch_size,
sampler=tordata.sampler.SequentialSampler(source),
collate_fn=self.collate_fn,
num_workers=self.num_workers)
feature_list = list()
view_list = list()
seq_type_list = list()
label_list = list()
for i, x in enumerate(data_loader):
seq, view, seq_type, label, batch_frame = x
for j in range(len(seq)):
seq[j] = self.np2var(seq[j]).float()
if batch_frame is not None:
batch_frame = self.np2var(batch_frame).int()
# print(batch_frame, np.sum(batch_frame))
feature, _ = self.encoder(*seq, batch_frame)
n, num_bin, _ = feature.size()
feature_list.append(feature.view(n, -1).data.cpu().numpy())
view_list += view
seq_type_list += seq_type
label_list += label
return np.concatenate(feature_list, 0), view_list, seq_type_list, label_list
def save(self):
os.makedirs(osp.join('checkpoint', self.model_name), exist_ok=True)
torch.save(self.encoder.state_dict(),
osp.join('checkpoint', self.model_name,
'{}-{:0>5}-encoder.ptm'.format(
self.save_name, self.restore_iter)))
torch.save(self.optimizer.state_dict(),
osp.join('checkpoint', self.model_name,
'{}-{:0>5}-optimizer.ptm'.format(
self.save_name, self.restore_iter)))
# restore_iter: iteration index of the checkpoint to load
def load(self, restore_iter):
self.encoder.load_state_dict(torch.load(osp.join(
'checkpoint', self.model_name,
'{}-{:0>5}-encoder.ptm'.format(self.save_name, restore_iter))))
self.optimizer.load_state_dict(torch.load(osp.join(
'checkpoint', self.model_name,
'{}-{:0>5}-optimizer.ptm'.format(self.save_name, restore_iter))))