-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdnn_cnn_2.py
334 lines (263 loc) · 14.3 KB
/
dnn_cnn_2.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
"""
Do not change other parts than those marked by TODO.
If our script cannot run your code or the format is improper, your code will not be graded.
Search TODO for those parts you need to complete.
Please follow the step indicated in TODO (step) to complete this script from step = 1 to step = 5.
"""
import json
import numpy as np
import sys
import dnn_misc
import os
import argparse
def data_loader_mnist(dataset):
# This function reads the MNIST data and separate it into train, val, and test set
with open(dataset, 'r') as f:
data_set = json.load(f)
train_set, valid_set, test_set = data_set['train'], data_set['valid'], data_set['test']
Xtrain = train_set[0]
Ytrain = train_set[1]
Xvalid = valid_set[0]
Yvalid = valid_set[1]
Xtest = test_set[0]
Ytest = test_set[1]
return np.array(Xtrain).reshape(-1, 1, 28, 28), np.array(Ytrain), np.array(Xvalid).reshape(-1, 1, 28, 28),\
np.array(Yvalid), np.array(Xtest).reshape(-1, 1, 28, 28), np.array(Ytest)
def predict_label(f):
# This is a function to determine the predicted label given scores
if f.shape[1] == 1:
return (f > 0).astype(float)
else:
return np.argmax(f, axis=1).astype(float).reshape((f.shape[0], -1))
class DataSplit:
def __init__(self, X, Y):
self.X = X
self.Y = Y
self.N, self.d, _, _ = self.X.shape
def get_example(self, idx):
batchX = np.zeros((len(idx), self.X.shape[1], self.X.shape[2], self.X.shape[3]))
batchY = np.zeros((len(idx), 1))
for i in range(len(idx)):
batchX[i] = self.X[idx[i]]
batchY[i, :] = self.Y[idx[i]]
return batchX, batchY
def main(main_params):
"""
Search TODO for those parts you need to complete.
Please follow the step indicated in TODO (step) to complete this script from step = 1 to step = 5.
"""
### set the random seed ###
np.random.seed(int(main_params['random_seed']))
### data processing ###
Xtrain, Ytrain, Xval, Yval , _, _ = data_loader_mnist(dataset = 'mnist_subset.json')
N_train, d, _, _ = Xtrain.shape
N_val, _, _, _ = Xval.shape
trainSet = DataSplit(Xtrain, Ytrain)
valSet = DataSplit(Xval, Yval)
### building/defining CNN ###
"""
In this script, we are going to build a CNN for a 10-class classification problem on MNIST.
The network structure is input --> convolution --> relu --> max pooling --> convolution --> relu --> max pooling --> flatten --> dropout --> linear --> softmax_cross_entropy loss
the hidden_layer size (num_L1) is 1225
the output_layer size (num_L2) is 10
"""
model = dict()
num_L1 = 1225
num_L2 = 10
# experimental setup
num_epoch = int(main_params['num_epoch'])
minibatch_size = int(main_params['minibatch_size'])
# optimization setting: _alpha for momentum, _lambda for weight decay
_learning_rate = float(main_params['learning_rate'])
_step = 30
_alpha = float(main_params['alpha'])
_lambda = float(main_params['lambda'])
_dropout_rate = float(main_params['dropout_rate'])
# create objects (modules) from the module classes
model['C1'] = dnn_misc.conv_layer(num_input = d, num_output = 25, filter_len = 5, stride = 1)
model['nonlinear1'] = dnn_misc.relu()
model['M1'] = dnn_misc.max_pool(max_len = 2, stride = 2)
################################################################################
# TODO (1): Understand the new modules to be included (compared to dnn_cnn.py) #
# You do not need to modify any thing here. #
################################################################################
model['C2'] = dnn_misc.conv_layer(num_input = 25, num_output=25, filter_len=3, stride=1)
model['nonlinear2'] = dnn_misc.relu()
model['M2'] = dnn_misc.max_pool(max_len=2, stride=2)
################################################################################
# End of TODO (1) #
################################################################################
model['F1'] = dnn_misc.flatten_layer()
model['drop1'] = dnn_misc.dropout(r = _dropout_rate)
model['L1'] = dnn_misc.linear_layer(input_D = num_L1, output_D = num_L2)
model['loss'] = dnn_misc.softmax_cross_entropy()
# create variables for momentum
if _alpha > 0.0:
momentum = dnn_misc.add_momentum(model)
else:
momentum = None
train_acc_record = []
val_acc_record = []
### run training and validation ###
for t in range(num_epoch):
print('At epoch ' + str(t + 1))
if (t % _step == 0) and (t != 0):
_learning_rate = _learning_rate * 0.1
idx_order = np.random.permutation(N_train)
train_acc = 0.0
train_loss = 0.0
train_count = 0
val_acc = 0.0
val_count = 0
for i in range(int(np.floor(N_train / minibatch_size))):
# get a mini-batch of data
x, y = trainSet.get_example(idx_order[i * minibatch_size : (i + 1) * minibatch_size])
### forward ###
c1 = model['C1'].forward(x)
h1 = model['nonlinear1'].forward(c1)
m1 = model['M1'].forward(h1)
################################################################################
# TODO (2): Connect the three modules for the forward pass #
# model['C2'] #
# model['nonlinear2'] #
# model['M2'] #
# into the forward pass. #
# Please make sure to connect them with m1 and m2, the input and output of the #
# previous and the next modules, respectively #
################################################################################
# TODO (2)
c2 = model['C2'].forward(m1)
h2 = model['nonlinear2'].forward(c2)
m2 = model['M2'].forward(h2)
################################################################################
# End of TODO (2) #
################################################################################
f1 = model['F1'].forward(m2)
d1 = model['drop1'].forward(f1, is_train = True)
a1 = model['L1'].forward(d1)
loss = model['loss'].forward(a1, y)
### backward ###
grad_a1 = model['loss'].backward(a1, y)
grad_d1 = model['L1'].backward(d1, grad_a1)
grad_f1 = model['drop1'].backward(f1, grad_d1)
grad_m2 = model['F1'].backward(m2, grad_f1)
################################################################################
# TODO (3): Connect the three modules for the backward pass #
# model['C2'] #
# model['nonlinear2'] #
# model['M2'] #
# into the backward pass. #
# Please make sure to connect them with grad_m2 and grad_m1, the input and #
# output of the previous and the next modules, respectively #
# Please pay attention to the number of arguments in the backward pass. #
################################################################################
# TODO (3)
grad_h2 = model['M2'].backward(h2, grad_m2)
grad_c2 = model['nonlinear2'].backward(c2, grad_h2)
grad_m1 = model['C2'].backward(m1, grad_c2)
################################################################################
# End of TODO (3) #
################################################################################
grad_h1 = model['M1'].backward(h1, grad_m1)
grad_c1 = model['nonlinear1'].backward(c1, grad_h1)
grad_x = model['C1'].backward(x, grad_c1)
### gradient_update ###
for module_name, module in model.items():
# check if a module has learnable parameters
if hasattr(module, 'params'):
for key, _ in module.params.items():
g = module.gradient[key] + _lambda * module.params[key]
if _alpha > 0.0:
momentum[module_name + '_' + key] = _alpha * momentum[module_name + '_' + key] - _learning_rate * g
module.params[key] += momentum[module_name + '_' + key]
else:
module.params[key] -= _learning_rate * g
### Computing training accuracy and obj ###
for i in range(int(np.floor(N_train / minibatch_size))):
x, y = trainSet.get_example(np.arange(i * minibatch_size, (i + 1) * minibatch_size))
### forward ###
c1 = model['C1'].forward(x)
h1 = model['nonlinear1'].forward(c1)
m1 = model['M1'].forward(h1)
################################################################################
# TODO (4): Connect the three modules for the forward pass #
# model['C2'] #
# model['nonlinear2'] #
# model['M2'] #
# into the forward pass. #
# Please make sure to connect them with m1 and m2, the input and output of the #
# previous and the next modules, respectively #
################################################################################
# TODO (4)
c2 = model['C2'].forward(m1)
h2 = model['nonlinear2'].forward(c2)
m2 = model['M2'].forward(h2)
################################################################################
# End of TODO (4) #
################################################################################
f1 = model['F1'].forward(m2)
d1 = model['drop1'].forward(f1, is_train = False)
a1 = model['L1'].forward(d1)
loss = model['loss'].forward(a1, y)
train_loss += len(y) * loss
train_acc += np.sum(predict_label(a1) == y)
train_count += len(y)
train_loss = train_loss / train_count
train_acc = train_acc / train_count
train_acc_record.append(train_acc)
print('Training loss at epoch ' + str(t + 1) + ' is ' + str(train_loss))
print('Training accuracy at epoch ' + str(t + 1) + ' is ' + str(train_acc))
### Computing validation accuracy ###
for i in range(int(np.floor(N_val / minibatch_size))):
x, y = valSet.get_example(np.arange(i * minibatch_size, (i + 1) * minibatch_size))
### forward ###
c1 = model['C1'].forward(x)
h1 = model['nonlinear1'].forward(c1)
m1 = model['M1'].forward(h1)
################################################################################
# TODO (5): Connect the three modules for the forward pass #
# model['C2'] #
# model['nonlinear2'] #
# model['M2'] #
# into the forward pass. #
# Please make sure to connect them with m1 and m2, the input and output of the #
# previous and the next modules, respectively #
################################################################################
# TODO (5)
c2 = model['C2'].forward(m1)
h2 = model['nonlinear2'].forward(c2)
m2 = model['M2'].forward(h2)
################################################################################
# End of TODO (5) #
################################################################################
f1 = model['F1'].forward(m2)
d1 = model['drop1'].forward(f1, is_train = False)
a1 = model['L1'].forward(d1)
val_acc += np.sum(predict_label(a1) == y)
val_count += len(y)
val_acc = val_acc / val_count
val_acc_record.append(val_acc)
print('Validation accuracy at epoch ' + str(t + 1) + ' is ' + str(val_acc))
# save file
json.dump({'train': train_acc_record, 'val': val_acc_record},
open('CNN2_lr' + str(main_params['learning_rate']) +
'_m' + str(main_params['alpha']) +
'_w' + str(main_params['lambda']) +
'_d' + str(main_params['dropout_rate']) +
'.json', 'w'))
print('Finish running!')
return
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument('--random_seed', default=2)
parser.add_argument('--learning_rate', default=0.001)
parser.add_argument('--alpha', default=0.0)
parser.add_argument('--lambda', default=0.0)
parser.add_argument('--dropout_rate', default=0.5)
parser.add_argument('--num_epoch', default=30)
parser.add_argument('--minibatch_size', default=5)
args = parser.parse_args()
main_params = vars(args)
# print ('parsed input parameters:')
# print (json.dumps(main_params, indent = 2))
main(main_params)