forked from ethereum/go-ethereum
-
Notifications
You must be signed in to change notification settings - Fork 15
/
Copy pathsample.go
446 lines (395 loc) · 10.4 KB
/
sample.go
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
package metrics
import (
"math"
"math/rand"
"sync"
"time"
"golang.org/x/exp/slices"
)
const rescaleThreshold = time.Hour
type SampleSnapshot interface {
Count() int64
Max() int64
Mean() float64
Min() int64
Percentile(float64) float64
Percentiles([]float64) []float64
Size() int
StdDev() float64
Sum() int64
Variance() float64
}
// Samples maintain a statistically-significant selection of values from
// a stream.
type Sample interface {
Snapshot() SampleSnapshot
Clear()
Update(int64)
}
// ExpDecaySample is an exponentially-decaying sample using a forward-decaying
// priority reservoir. See Cormode et al's "Forward Decay: A Practical Time
// Decay Model for Streaming Systems".
//
// <http://dimacs.rutgers.edu/~graham/pubs/papers/fwddecay.pdf>
type ExpDecaySample struct {
alpha float64
count int64
mutex sync.Mutex
reservoirSize int
t0, t1 time.Time
values *expDecaySampleHeap
rand *rand.Rand
}
// NewExpDecaySample constructs a new exponentially-decaying sample with the
// given reservoir size and alpha.
func NewExpDecaySample(reservoirSize int, alpha float64) Sample {
if !Enabled {
return NilSample{}
}
s := &ExpDecaySample{
alpha: alpha,
reservoirSize: reservoirSize,
t0: time.Now(),
values: newExpDecaySampleHeap(reservoirSize),
}
s.t1 = s.t0.Add(rescaleThreshold)
return s
}
// SetRand sets the random source (useful in tests)
func (s *ExpDecaySample) SetRand(prng *rand.Rand) Sample {
s.rand = prng
return s
}
// Clear clears all samples.
func (s *ExpDecaySample) Clear() {
s.mutex.Lock()
defer s.mutex.Unlock()
s.count = 0
s.t0 = time.Now()
s.t1 = s.t0.Add(rescaleThreshold)
s.values.Clear()
}
// Snapshot returns a read-only copy of the sample.
func (s *ExpDecaySample) Snapshot() SampleSnapshot {
s.mutex.Lock()
defer s.mutex.Unlock()
var (
samples = s.values.Values()
values = make([]int64, len(samples))
max int64 = math.MinInt64
min int64 = math.MaxInt64
sum int64
)
for i, item := range samples {
v := item.v
values[i] = v
sum += v
if v > max {
max = v
}
if v < min {
min = v
}
}
return newSampleSnapshotPrecalculated(s.count, values, min, max, sum)
}
// Update samples a new value.
func (s *ExpDecaySample) Update(v int64) {
s.update(time.Now(), v)
}
// update samples a new value at a particular timestamp. This is a method all
// its own to facilitate testing.
func (s *ExpDecaySample) update(t time.Time, v int64) {
s.mutex.Lock()
defer s.mutex.Unlock()
s.count++
if s.values.Size() == s.reservoirSize {
s.values.Pop()
}
var f64 float64
if s.rand != nil {
f64 = s.rand.Float64()
} else {
f64 = rand.Float64()
}
s.values.Push(expDecaySample{
k: math.Exp(t.Sub(s.t0).Seconds()*s.alpha) / f64,
v: v,
})
if t.After(s.t1) {
values := s.values.Values()
t0 := s.t0
s.values.Clear()
s.t0 = t
s.t1 = s.t0.Add(rescaleThreshold)
for _, v := range values {
v.k = v.k * math.Exp(-s.alpha*s.t0.Sub(t0).Seconds())
s.values.Push(v)
}
}
}
// NilSample is a no-op Sample.
type NilSample struct{}
func (NilSample) Clear() {}
func (NilSample) Snapshot() SampleSnapshot { return (*emptySnapshot)(nil) }
func (NilSample) Update(v int64) {}
// SamplePercentiles returns an arbitrary percentile of the slice of int64.
func SamplePercentile(values []int64, p float64) float64 {
return CalculatePercentiles(values, []float64{p})[0]
}
// CalculatePercentiles returns a slice of arbitrary percentiles of the slice of
// int64. This method returns interpolated results, so e.g if there are only two
// values, [0, 10], a 50% percentile will land between them.
//
// Note: As a side-effect, this method will also sort the slice of values.
// Note2: The input format for percentiles is NOT percent! To express 50%, use 0.5, not 50.
func CalculatePercentiles(values []int64, ps []float64) []float64 {
scores := make([]float64, len(ps))
size := len(values)
if size == 0 {
return scores
}
slices.Sort(values)
for i, p := range ps {
pos := p * float64(size+1)
if pos < 1.0 {
scores[i] = float64(values[0])
} else if pos >= float64(size) {
scores[i] = float64(values[size-1])
} else {
lower := float64(values[int(pos)-1])
upper := float64(values[int(pos)])
scores[i] = lower + (pos-math.Floor(pos))*(upper-lower)
}
}
return scores
}
// sampleSnapshot is a read-only copy of another Sample.
type sampleSnapshot struct {
count int64
values []int64
max int64
min int64
mean float64
sum int64
variance float64
}
// newSampleSnapshotPrecalculated creates a read-only sampleSnapShot, using
// precalculated sums to avoid iterating the values
func newSampleSnapshotPrecalculated(count int64, values []int64, min, max, sum int64) *sampleSnapshot {
if len(values) == 0 {
return &sampleSnapshot{
count: count,
values: values,
}
}
return &sampleSnapshot{
count: count,
values: values,
max: max,
min: min,
mean: float64(sum) / float64(len(values)),
sum: sum,
}
}
// newSampleSnapshot creates a read-only sampleSnapShot, and calculates some
// numbers.
func newSampleSnapshot(count int64, values []int64) *sampleSnapshot {
var (
max int64 = math.MinInt64
min int64 = math.MaxInt64
sum int64
)
for _, v := range values {
sum += v
if v > max {
max = v
}
if v < min {
min = v
}
}
return newSampleSnapshotPrecalculated(count, values, min, max, sum)
}
// Count returns the count of inputs at the time the snapshot was taken.
func (s *sampleSnapshot) Count() int64 { return s.count }
// Max returns the maximal value at the time the snapshot was taken.
func (s *sampleSnapshot) Max() int64 { return s.max }
// Mean returns the mean value at the time the snapshot was taken.
func (s *sampleSnapshot) Mean() float64 { return s.mean }
// Min returns the minimal value at the time the snapshot was taken.
func (s *sampleSnapshot) Min() int64 { return s.min }
// Percentile returns an arbitrary percentile of values at the time the
// snapshot was taken.
func (s *sampleSnapshot) Percentile(p float64) float64 {
return SamplePercentile(s.values, p)
}
// Percentiles returns a slice of arbitrary percentiles of values at the time
// the snapshot was taken.
func (s *sampleSnapshot) Percentiles(ps []float64) []float64 {
return CalculatePercentiles(s.values, ps)
}
// Size returns the size of the sample at the time the snapshot was taken.
func (s *sampleSnapshot) Size() int { return len(s.values) }
// Snapshot returns the snapshot.
func (s *sampleSnapshot) Snapshot() SampleSnapshot { return s }
// StdDev returns the standard deviation of values at the time the snapshot was
// taken.
func (s *sampleSnapshot) StdDev() float64 {
if s.variance == 0.0 {
s.variance = SampleVariance(s.mean, s.values)
}
return math.Sqrt(s.variance)
}
// Sum returns the sum of values at the time the snapshot was taken.
func (s *sampleSnapshot) Sum() int64 { return s.sum }
// Values returns a copy of the values in the sample.
func (s *sampleSnapshot) Values() []int64 {
values := make([]int64, len(s.values))
copy(values, s.values)
return values
}
// Variance returns the variance of values at the time the snapshot was taken.
func (s *sampleSnapshot) Variance() float64 {
if s.variance == 0.0 {
s.variance = SampleVariance(s.mean, s.values)
}
return s.variance
}
// SampleVariance returns the variance of the slice of int64.
func SampleVariance(mean float64, values []int64) float64 {
if len(values) == 0 {
return 0.0
}
var sum float64
for _, v := range values {
d := float64(v) - mean
sum += d * d
}
return sum / float64(len(values))
}
// A uniform sample using Vitter's Algorithm R.
//
// <http://www.cs.umd.edu/~samir/498/vitter.pdf>
type UniformSample struct {
count int64
mutex sync.Mutex
reservoirSize int
values []int64
rand *rand.Rand
}
// NewUniformSample constructs a new uniform sample with the given reservoir
// size.
func NewUniformSample(reservoirSize int) Sample {
if !Enabled {
return NilSample{}
}
return &UniformSample{
reservoirSize: reservoirSize,
values: make([]int64, 0, reservoirSize),
}
}
// SetRand sets the random source (useful in tests)
func (s *UniformSample) SetRand(prng *rand.Rand) Sample {
s.rand = prng
return s
}
// Clear clears all samples.
func (s *UniformSample) Clear() {
s.mutex.Lock()
defer s.mutex.Unlock()
s.count = 0
s.values = make([]int64, 0, s.reservoirSize)
}
// Snapshot returns a read-only copy of the sample.
func (s *UniformSample) Snapshot() SampleSnapshot {
s.mutex.Lock()
values := make([]int64, len(s.values))
copy(values, s.values)
count := s.count
s.mutex.Unlock()
return newSampleSnapshot(count, values)
}
// Update samples a new value.
func (s *UniformSample) Update(v int64) {
s.mutex.Lock()
defer s.mutex.Unlock()
s.count++
if len(s.values) < s.reservoirSize {
s.values = append(s.values, v)
} else {
var r int64
if s.rand != nil {
r = s.rand.Int63n(s.count)
} else {
r = rand.Int63n(s.count)
}
if r < int64(len(s.values)) {
s.values[int(r)] = v
}
}
}
// expDecaySample represents an individual sample in a heap.
type expDecaySample struct {
k float64
v int64
}
func newExpDecaySampleHeap(reservoirSize int) *expDecaySampleHeap {
return &expDecaySampleHeap{make([]expDecaySample, 0, reservoirSize)}
}
// expDecaySampleHeap is a min-heap of expDecaySamples.
// The internal implementation is copied from the standard library's container/heap
type expDecaySampleHeap struct {
s []expDecaySample
}
func (h *expDecaySampleHeap) Clear() {
h.s = h.s[:0]
}
func (h *expDecaySampleHeap) Push(s expDecaySample) {
n := len(h.s)
h.s = h.s[0 : n+1]
h.s[n] = s
h.up(n)
}
func (h *expDecaySampleHeap) Pop() expDecaySample {
n := len(h.s) - 1
h.s[0], h.s[n] = h.s[n], h.s[0]
h.down(0, n)
n = len(h.s)
s := h.s[n-1]
h.s = h.s[0 : n-1]
return s
}
func (h *expDecaySampleHeap) Size() int {
return len(h.s)
}
func (h *expDecaySampleHeap) Values() []expDecaySample {
return h.s
}
func (h *expDecaySampleHeap) up(j int) {
for {
i := (j - 1) / 2 // parent
if i == j || !(h.s[j].k < h.s[i].k) {
break
}
h.s[i], h.s[j] = h.s[j], h.s[i]
j = i
}
}
func (h *expDecaySampleHeap) down(i, n int) {
for {
j1 := 2*i + 1
if j1 >= n || j1 < 0 { // j1 < 0 after int overflow
break
}
j := j1 // left child
if j2 := j1 + 1; j2 < n && !(h.s[j1].k < h.s[j2].k) {
j = j2 // = 2*i + 2 // right child
}
if !(h.s[j].k < h.s[i].k) {
break
}
h.s[i], h.s[j] = h.s[j], h.s[i]
i = j
}
}